0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (12)
  • R250 - R500 (27)
  • R500+ (1,398)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Introduction to Mathematica (R) for Physicists (Hardcover, 2014 ed.): Andrey Grozin Introduction to Mathematica (R) for Physicists (Hardcover, 2014 ed.)
Andrey Grozin
R2,038 Discovery Miles 20 380 Ships in 10 - 15 working days

The basics of computer algebra and the language of Mathematica are described. This title will lead toward an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas. Many important results in physics would never be obtained without a wide use of computer algebra.

Matrix Algorithms in MATLAB (Paperback): Ong U. Routh Matrix Algorithms in MATLAB (Paperback)
Ong U. Routh
R2,464 Discovery Miles 24 640 Ships in 10 - 15 working days

Matrix Algorithms in MATLAB focuses on the MATLAB code implementations of matrix algorithms. The MATLAB codes presented in the book are tested with thousands of runs of MATLAB randomly generated matrices, and the notation in the book follows the MATLAB style to ensure a smooth transition from formulation to the code, with MATLAB codes discussed in this book kept to within 100 lines for the sake of clarity. The book provides an overview and classification of the interrelations of various algorithms, as well as numerous examples to demonstrate code usage and the properties of the presented algorithms. Despite the wide availability of computer programs for matrix computations, it continues to be an active area of research and development. New applications, new algorithms, and improvements to old algorithms are constantly emerging.

Geophysical Data Analysis: Discrete Inverse Theory, Volume 45 - MATLAB Edition (Paperback, 3rd edition): William Menke Geophysical Data Analysis: Discrete Inverse Theory, Volume 45 - MATLAB Edition (Paperback, 3rd edition)
William Menke
R1,743 Discovery Miles 17 430 Ships in 10 - 15 working days

Since 1984, Geophysical Data Analysis has filled the need for a short, concise reference on inverse theory for individuals who have an intermediate background in science and mathematics. The new edition maintains the accessible and succinct manner for which it is known, with the addition of: MATLAB examples and problem sets Advanced color graphics Coverage of new topics, including Adjoint Methods; Inversion by Steepest Descent, Monte Carlo and Simulated Annealing methods; and Bootstrap algorithm for determining empirical confidence intervals

A Criminologist's Guide to R - Crime by the Numbers (Hardcover): Jacob Kaplan A Criminologist's Guide to R - Crime by the Numbers (Hardcover)
Jacob Kaplan
R2,606 Discovery Miles 26 060 Ships in 10 - 15 working days

A Criminologist's Guide to R: Crime by the Numbers introduces the programming language R and covers the necessary skills to conduct quantitative research in criminology. By the end of this book, a person without any prior programming experience can take raw crime data, be able to clean it, visualize the data, present it using R Markdown, and change it to a format ready for analysis. A Criminologist's Guide to R focuses on skills specifically for criminology such as spatial joins, mapping, and scraping data from PDFs, however any social scientist looking for an introduction to R for data analysis will find this useful. Key Features: Introduction to RStudio including how to change user preference settings. Basic data exploration and cleaning - subsetting, loading data, regular expressions, aggregating data. Graphing with ggplot2. How to make maps (hotspot maps, choropleth maps, interactive maps). Webscraping and PDF scraping. Project management - how to prepare for a project, how to decide which projects to do, best ways to collaborate with people, how to store your code (using git), and how to test your code.

Applied Statistics and Data Science - Proceedings of Statistics 2021 Canada, Selected Contributions (Hardcover, 1st ed. 2021):... Applied Statistics and Data Science - Proceedings of Statistics 2021 Canada, Selected Contributions (Hardcover, 1st ed. 2021)
Yogendra P. Chaubey, Salim Lahmiri, Fassil Nebebe, Arusharka Sen
R4,687 Discovery Miles 46 870 Ships in 18 - 22 working days

This proceedings volume features top contributions in modern statistical methods from Statistics 2021 Canada, the 6th Annual Canadian Conference in Applied Statistics, held virtually on July 15-18, 2021. Papers are contributed from established and emerging scholars, covering cutting-edge and contemporary innovative techniques in statistics and data science. Major areas of contribution include Bayesian statistics; computational statistics; data science; semi-parametric regression; and stochastic methods in biology, crop science, ecology and engineering. It will be a valuable edited collection for graduate students, researchers, and practitioners in a wide array of applied statistical and data science methods.

Principles of Linear Algebra with Maple (Hardcover): KM Shiskowski Principles of Linear Algebra with Maple (Hardcover)
KM Shiskowski
R3,265 Discovery Miles 32 650 Ships in 18 - 22 working days

An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM

Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra.

Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors.

The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures.

Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.

Bayesian Essentials with R (Hardcover, 2nd ed. 2014): Jean-Michel Marin, Christian P. Robert Bayesian Essentials with R (Hardcover, 2nd ed. 2014)
Jean-Michel Marin, Christian P. Robert
R3,737 Discovery Miles 37 370 Ships in 10 - 15 working days

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. The stakes are high and the reader determines the outcome. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. This works in conjunction with the bayess package.

Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels, as exemplified by courses given at Universite Paris Dauphine (France), University of Canterbury (New Zealand), and University of British Columbia (Canada). It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. A strength of the text is the noteworthy emphasis on the role of models in statistical analysis.

This is the new, fully-revised edition to the book Bayesian Core: A Practical Approach to Computational Bayesian Statistics.

Jean-Michel Marin is Professor of Statistics at Universite Montpellier 2, France, and Head of the Mathematics and Modelling research unit. He has written over 40 papers on Bayesian methodology and computing, as well as worked closely with population geneticists over the past ten years.

Christian Robert is Professor of Statistics at Universite Paris-Dauphine, France. He has written over 150 papers on Bayesian Statistics and computational methods and is the author or co-author of seven books on those topics, including The Bayesian Choice (Springer, 2001), winner of the ISBA DeGroot Prize in 2004. He is a Fellow of the Institute of Mathematical Statistics, the Royal Statistical Society and the American Statistical Society. He has been co-editor of the Journal of the Royal Statistical Society, Series B, and in the editorial boards of the Journal of the American Statistical Society, the Annals of Statistics, Statistical Science, and Bayesian Analysis. He is also a recipient of an Erskine Fellowship from the University of Canterbury (NZ) in 2006 and a senior member of the Institut Universitaire de France (2010-2015)."

Text Analysis with R - For Students of Literature (Hardcover, 2nd ed. 2020): Matthew L. Jockers, Rosamond Thalken Text Analysis with R - For Students of Literature (Hardcover, 2nd ed. 2020)
Matthew L. Jockers, Rosamond Thalken
R2,222 Discovery Miles 22 220 Ships in 10 - 15 working days

Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale "microanalysis" of single texts to large scale "macroanalysis" of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book's focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.

Outlier Ensembles - An Introduction (Hardcover, 1st ed. 2017): Charu C. Aggarwal, Saket Sathe Outlier Ensembles - An Introduction (Hardcover, 1st ed. 2017)
Charu C. Aggarwal, Saket Sathe
R2,135 Discovery Miles 21 350 Ships in 18 - 22 working days

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Agent-Based Modelling of Worker Exploitation - Slave from the Machine (Hardcover, 1st ed. 2021): Thomas Chesney Agent-Based Modelling of Worker Exploitation - Slave from the Machine (Hardcover, 1st ed. 2021)
Thomas Chesney
R3,107 Discovery Miles 31 070 Ships in 18 - 22 working days

This book illustrates the potential for computer simulation in the study of modern slavery and worker abuse, and by extension in all social issues. It lays out a philosophy of how agent-based modelling can be used in the social sciences. In addressing modern slavery, Chesney considers precarious work that is vulnerable to abuse, like sweat-shop labour and prostitution, and shows how agent modelling can be used to study, understand and fight abuse in these areas. He explores the philosophy, application and practice of agent modelling through the popular and free software NetLogo. This topical book is grounded in the technology needed to address the messy, chaotic, real world problems that humanity faces-in this case the serious problem of abuse at work-but equally in the social sciences which are needed to avoid the unintended consequences inherent to human responses. It includes a short but extensive NetLogo guide which readers can use to quickly learn this software and go on to develop complex models. This is an important book for students and researchers of computational social science and others interested in agent-based modelling.

JMP Start Statistics - A Guide to Statistics and Data Analysis Using JMP, Sixth Edition (Hardcover, 6th ed.): John Sall, Mia L.... JMP Start Statistics - A Guide to Statistics and Data Analysis Using JMP, Sixth Edition (Hardcover, 6th ed.)
John Sall, Mia L. Stephens, Ann Lehman
R3,111 Discovery Miles 31 110 Ships in 10 - 15 working days
Advanced Computing Technologies and Applications - Proceedings of 2nd International Conference on Advanced Computing... Advanced Computing Technologies and Applications - Proceedings of 2nd International Conference on Advanced Computing Technologies and Applications-ICACTA 2020 (Hardcover, 1st ed. 2020)
Hari Vasudevan, Antonis Michalas, Narendra Shekokar, Meera Narvekar
R5,285 Discovery Miles 52 850 Ships in 18 - 22 working days

This book features selected papers presented at the 2nd International Conference on Advanced Computing Technologies and Applications, held at SVKM's Dwarkadas J. Sanghvi College of Engineering, Mumbai, India, from 28 to 29 February 2020. Covering recent advances in next-generation computing, the book focuses on recent developments in intelligent computing, such as linguistic computing, statistical computing, data computing and ambient applications.

Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via... Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs (Hardcover, 1st ed. 2022)
Raymond Bisdorff
R2,931 Discovery Miles 29 310 Ships in 18 - 22 working days

This book describes Python3 programming resources for implementing decision aiding algorithms in the context of a bipolar-valued outranking approach. These computing resources, made available under the name Digraph3, are useful in the field of Algorithmic Decision Theory and more specifically in outranking-based Multiple-Criteria Decision Aiding (MCDA). The first part of the book presents a set of tutorials introducing the Digraph3 collection of Python3 modules and its main objects, such as bipolar-valued digraphs and outranking digraphs. In eight methodological chapters, the second part illustrates multiple-criteria evaluation models and decision algorithms. These chapters are largely problem-oriented and demonstrate how to edit a new multiple-criteria performance tableau, how to build a best choice recommendation, how to compute the winner of an election and how to make rankings or ratings using incommensurable criteria. The book's third part presents three real-world decision case studies, while the fourth part addresses more advanced topics, such as computing ordinal correlations between bipolar-valued outranking digraphs, computing kernels in bipolar-valued digraphs, testing for confidence or stability of outranking statements when facing uncertain or solely ordinal criteria significance weights, and tempering plurality tyranny effects in social choice problems. The fifth and last part is more specifically focused on working with undirected graphs, tree graphs and forests. The closing chapter explores comparability, split, interval and permutation graphs. The book is primarily intended for graduate students in management sciences, computational statistics and operations research. The chapters presenting algorithms for ranking multicriteria performance records will be of computational interest for designers of web recommender systems. Similarly, the relative and absolute quantile-rating algorithms, discussed and illustrated in several chapters, will be of practical interest to public and private performance auditors.

How to Find a Needle in a Haystack - From the Insider Threat to Solo Perpetrators (Hardcover): Yair Neuman How to Find a Needle in a Haystack - From the Insider Threat to Solo Perpetrators (Hardcover)
Yair Neuman
R1,595 Discovery Miles 15 950 Ships in 10 - 15 working days

By the end of this book, the reader will understand: the difficulties of finding a needle in a haystack; creative solutions to address the problem; unique ways of engineering features and solving the problem of the lack of data (e.g. synthetic data). Additionally, the reader will be able to: avoid mistakes resulting from a lack of understanding; search for appropriate methods of feature engineering; locate the relevant technological solutions within the general context of decision-making.

Encyclopedia of Robust Control: Volume I (Concepts and Applications) (Hardcover): Zac Fredericks Encyclopedia of Robust Control: Volume I (Concepts and Applications) (Hardcover)
Zac Fredericks
R3,349 R3,027 Discovery Miles 30 270 Save R322 (10%) Ships in 18 - 22 working days
Statistical Modelling of Survival Data with Random Effects - H-Likelihood Approach (Hardcover, 1st ed. 2017): Il Do Ha,... Statistical Modelling of Survival Data with Random Effects - H-Likelihood Approach (Hardcover, 1st ed. 2017)
Il Do Ha, Jong-Hyeon Jeong, Youngjo Lee
R4,041 Discovery Miles 40 410 Ships in 18 - 22 working days

This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ("frailtyHL"), while the real-world data examples together with an R package, "frailtyHL" in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.

Introduction to Time Series Modeling with Applications in R - with Applications in R (Paperback, 2nd edition): Genshiro Kitagawa Introduction to Time Series Modeling with Applications in R - with Applications in R (Paperback, 2nd edition)
Genshiro Kitagawa
R1,554 Discovery Miles 15 540 Ships in 10 - 15 working days

Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. -Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. -MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics (Hardcover, 2nd edition): Nicholas J. Horton, Ken... Using R and RStudio for Data Management, Statistical Analysis, and Graphics (Hardcover, 2nd edition)
Nicholas J. Horton, Ken Kleinman
R2,376 Discovery Miles 23 760 Ships in 9 - 17 working days

Improve Your Analytical Skills Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information. New to the Second Edition The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping New chapter on simulation that includes examples of data generated from complex models and distributions A detailed discussion of the philosophy and use of the knitr and markdown packages for R New packages that extend the functionality of R and facilitate sophisticated analyses Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots Easily Find Your Desired Task Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.

Optimization Modelling Using R (Hardcover): Timothy R. Anderson Optimization Modelling Using R (Hardcover)
Timothy R. Anderson
R2,803 Discovery Miles 28 030 Ships in 10 - 15 working days

This book covers using R for doing optimization, a key area of operations research, which has been applied to virtually every industry. The focus is on linear and mixed integer optimization. It uses an algebraic modeling approach for creating formulations that pairs naturally with an algebraic implementation in R. With the rapid rise of interest in data analytics, a data analytics platform is key. Working technology and business professionals need an awareness of the tools and language of data analysis. R reduces the barrier to entry for people to start using data analytics tools. Philosophically, the book emphasizes creating formulations before going into implementation. Algebraic representation allows for clear understanding and generalization of large applications, and writing formulations is necessary to explain and convey the modeling decisions made. Appendix A introduces R. Mathematics is used at the level of subscripts and summations Refreshers are provided in Appendix B. This book: * Provides and explains code so examples are relatively clear and self-contained. * Emphasizes creating algebraic formulations before implementing. * Focuses on application rather than algorithmic details. * Embodies the philosophy of reproducible research. * Uses open-source tools to ensure access to powerful optimization tools. * Promotes open-source: all materials are available on the author's github repository. * Demonstrates common debugging practices with a troubleshooting emphasis specific to optimization modeling using R. * Provides code readers can adapt to their own applications . This book can be used for graduate and undergraduate courses for students without a background in optimization and with varying mathematical backgrounds.

Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback): Keith Mcnulty Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback)
Keith Mcnulty
R2,262 Discovery Miles 22 620 Ships in 10 - 15 working days

Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Linear Mixed Models - A Practical Guide Using Statistical Software (Hardcover, 3rd edition): Brady T. West, Kathleen B. Welch,... Linear Mixed Models - A Practical Guide Using Statistical Software (Hardcover, 3rd edition)
Brady T. West, Kathleen B. Welch, Andrzej T. Galecki
R2,974 Discovery Miles 29 740 Ships in 10 - 15 working days

Highly recommended by JASA, Technometrics, and other leading statistical journals, the first two editions of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Third Edition continues to lead readers step-by-step through the process of fitting LMMs. The third edition provides a comprehensive update of the available tools for fitting linear mixed-effects models in the newest versions of SAS, SPSS, R, Stata, and HLM. All examples have been updated, with a focus on new tools for visualization of results and interpretation. New conceptual and theoretical developments in mixed-effects modeling have been included, and there is a new chapter on power analysis for mixed-effects models. Features:*Dedicates an entire chapter to the key theories underlying LMMs for clustered, longitudinal, and repeated measures data *Provides descriptions, explanations, and examples of software code necessary to fit LMMs in SAS, SPSS, R, Stata, and HLM *Contains detailed tables of estimates and results, allowing for easy comparisons across software procedures *Presents step-by-step analyses of real-world data sets that arise from a variety of research settings and study designs, including hypothesis testing, interpretation of results, and model diagnostics *Integrates software code in each chapter to compare the relative advantages and disadvantages of each package *Supplemented by a website with software code, datasets, additional documents, and updates Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.

Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.): Takayuki Hibi Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.)
Takayuki Hibi
R3,657 R2,157 Discovery Miles 21 570 Save R1,500 (41%) Ships in 10 - 15 working days

The idea of the Grobner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Grobner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Grobner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Grobner basis. Since then, rapid development on the Grobner basis has been achieved by many researchers, including Bernd Sturmfels.

This book serves as a standard bible of the Grobner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC s of the Grobner basis, requiring no special knowledgeto understand those basic points.

Starting from the introductory performance of the Grobner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Grobner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Grobner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Grobner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Grobner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems."

Bayesian Nonparametric Data Analysis (Hardcover, 2015 ed.): Peter Muller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson Bayesian Nonparametric Data Analysis (Hardcover, 2015 ed.)
Peter Muller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson
R3,023 Discovery Miles 30 230 Ships in 10 - 15 working days

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition): Ronald H Heck, Scott L. Thomas, Lynn N. Tabata Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition)
Ronald H Heck, Scott L. Thomas, Lynn N. Tabata
R1,643 Discovery Miles 16 430 Ships in 10 - 15 working days

Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.

R for SAS and SPSS Users (Hardcover, 2nd ed. 2011): Robert A. Muenchen R for SAS and SPSS Users (Hardcover, 2nd ed. 2011)
Robert A. Muenchen
R4,385 Discovery Miles 43 850 Ships in 10 - 15 working days

R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bamboozled - In Search Of Joy In A World…
Melinda Ferguson Paperback R382 Discovery Miles 3 820
National Human Rights Institutions in…
Jan Wouters, Katrien Meuwissen Hardcover R2,846 Discovery Miles 28 460
Do the Geneva Conventions Matter?
Matthew Evangelista, Nina Tannenwald Hardcover R3,294 Discovery Miles 32 940
We, The People - Insights Of An Activist…
Albie Sachs Paperback  (5)
R420 R388 Discovery Miles 3 880
Demystifying Modern Slavery
David Gadd, Rose Broad Hardcover R4,072 Discovery Miles 40 720
Murder At Small Koppie - The Real Story…
Greg Marinovich Paperback  (5)
R305 Discovery Miles 3 050
Philosophical Foundations of Human…
Rowan Cruft, S Matthew Liao, … Hardcover R4,172 Discovery Miles 41 720
Politics of International Human Rights…
Koldo Casla Paperback R1,375 Discovery Miles 13 750
Power In Action - Democracy, Citizenship…
Steven Friedman Paperback R388 Discovery Miles 3 880
Policing Mobility Regimes - Frontex and…
Giuseppe Campesi Hardcover R4,502 Discovery Miles 45 020

 

Partners