0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (11)
  • R250 - R500 (25)
  • R500+ (1,431)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Introduction to Chemical Engineering Analysis Using Mathematica - for Chemists, Biotechnologists and Materials Scientists... Introduction to Chemical Engineering Analysis Using Mathematica - for Chemists, Biotechnologists and Materials Scientists (Paperback, 2nd edition)
Henry C. Foley
R3,314 Discovery Miles 33 140 Ships in 12 - 19 working days

Introduction to Chemical Engineering Analysis Using Mathematica, Second Edition reviews the processes and designs used to manufacture, use, and dispose of chemical products using Mathematica, one of the most powerful mathematical software tools available for symbolic, numerical, and graphical computing. Analysis and computation are explained simultaneously. The book covers the core concepts of chemical engineering, ranging from the conservation of mass and energy to chemical kinetics. The text also shows how to use the latest version of Mathematica, from the basics of writing a few lines of code through developing entire analysis programs. This second edition has been fully revised and updated, and includes analyses of the conservation of energy, whereas the first edition focused on the conservation of mass and ordinary differential equations.

Analysis and Design of Control Systems Using MATLAB (Hardcover): Rao V. Dukkipati Analysis and Design of Control Systems Using MATLAB (Hardcover)
Rao V. Dukkipati
R1,416 Discovery Miles 14 160 Ships in 12 - 19 working days

The book "Analysis and Design of Control Systems using MATLAB", is designed as a supplement to an introductory course in feedback control systems for undergraduate or graduate engineering students of all disciplines. Feedback control systems engineering is a multidisciplinary subject and presents a control engineering methodology based on mathematical fundamentals and stresses physical system modeling.This book includes the coverage of classical methods of control systems engineering: introduction to control systems, matrix analysis, Laplace transforms, mathematical modeling of dynamic systems, control system representation, performance and stability of feedback systems, analysis and design of feedback control systems, state space analysis and design, and MATLAB basics and MATLAB tutorial. The numerous worked examples offer detailed explanations, and guide the students through each set of problems to enable them to save a great deal of time and effort in arriving at an understanding of problems in this subject. Extensive references to guide the students to further sources of information on control systems and MATLAB is provided. In addition to students, practising engineers will also find this book immensely useful.

Statistical Signal Processing - Frequency Estimation (Hardcover, 2nd ed. 2020): Swagata Nandi, Debasis Kundu Statistical Signal Processing - Frequency Estimation (Hardcover, 2nd ed. 2020)
Swagata Nandi, Debasis Kundu
R3,395 Discovery Miles 33 950 Ships in 10 - 15 working days

This book introduces readers to various signal processing models that have been used in analyzing periodic data, and discusses the statistical and computational methods involved. Signal processing can broadly be considered to be the recovery of information from physical observations. The received signals are usually disturbed by thermal, electrical, atmospheric or intentional interferences, and due to their random nature, statistical techniques play an important role in their analysis. Statistics is also used in the formulation of appropriate models to describe the behavior of systems, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Analyzing different real-world data sets to illustrate how different models can be used in practice, and highlighting open problems for future research, the book is a valuable resource for senior undergraduate and graduate students specializing in mathematics or statistics.

Signals and Systems - A Primer with MATLAB (R) (Paperback): Matthew N.O Sadiku, Warsame Hassan Ali Signals and Systems - A Primer with MATLAB (R) (Paperback)
Matthew N.O Sadiku, Warsame Hassan Ali
R1,574 Discovery Miles 15 740 Ships in 9 - 17 working days

Signals and Systems: A Primer with MATLAB (R) provides clear, interesting, and easy-to-understand coverage of continuous-time and discrete-time signals and systems. Each chapter opens with a historical profile or career talk, followed by an introduction that states the chapter objectives and links the chapter to the previous ones. All principles are presented in a lucid, logical, step-by-step approach. As much as possible, the authors avoid wordiness and detail overload that could hide concepts and impede understanding. In recognition of the requirements by the Accreditation Board for Engineering and Technology (ABET) on integrating computer tools, the use of MATLAB (R) is encouraged in a student-friendly manner. MATLAB is introduced in Appendix B and applied gradually throughout the book. Each illustrative example is immediately followed by a practice problem along with its answer. Students can follow the example step by step to solve the practice problem without flipping pages or looking at the end of the book for answers. These practice problems test students' comprehension and reinforce key concepts before moving on to the next section. Toward the end of each chapter, the authors discuss some application aspects of the concepts covered in the chapter. The material covered in the chapter is applied to at least one or two practical problems or devices. This helps students see how the concepts are applied to real-life situations. In addition, thoroughly worked examples are given liberally at the end of every section. These examples give students a solid grasp of the solutions as well as the confidence to solve similar problems themselves. Some of the problems are solved in two or three ways to facilitate a deeper understanding and comparison of different approaches. Ten review questions in the form of multiple-choice objective items are provided at the end of each chapter with answers. The review questions are intended to cover the "little tricks" that the examples and end-of-chapter problems may not cover. They serve as a self-test device and help students determine chapter mastery. Each chapter also ends with a summary of key points and formulas. Designed for a three-hour semester course on signals and systems, Signals and Systems: A Primer with MATLAB (R) is intended as a textbook for junior-level undergraduate students in electrical and computer engineering. The prerequisites for a course based on this book are knowledge of standard mathematics (including calculus and differential equations) and electric circuit analysis.

Topological Methods in Data Analysis and Visualization VI - Theory, Applications, and Software (Hardcover, 1st ed. 2021):... Topological Methods in Data Analysis and Visualization VI - Theory, Applications, and Software (Hardcover, 1st ed. 2021)
Ingrid Hotz, Talha Bin Masood, Filip Sadlo, Julien Tierny
R5,143 Discovery Miles 51 430 Ships in 10 - 15 working days

This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.

A Tour of Data Science - Learn R and Python in Parallel (Hardcover): Nailong Zhang A Tour of Data Science - Learn R and Python in Parallel (Hardcover)
Nailong Zhang
R4,098 Discovery Miles 40 980 Ships in 9 - 17 working days

A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source. Key features: Allows you to learn R and Python in parallel Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools - data.table and pandas Provides a concise and accessible presentation Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc. Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

Bayes Factors for Forensic Decision Analyses with R (Hardcover, 1st ed. 2022): Silvia Bozza, Franco Taroni, Alex Biedermann Bayes Factors for Forensic Decision Analyses with R (Hardcover, 1st ed. 2022)
Silvia Bozza, Franco Taroni, Alex Biedermann
R1,648 Discovery Miles 16 480 Ships in 10 - 15 working days

Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability-keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information-scientific evidence-ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes. This book is Open Access.

Statistical Data Cleaning with Applications in R (Hardcover): M van der Loo Statistical Data Cleaning with Applications in R (Hardcover)
M van der Loo
R1,968 Discovery Miles 19 680 Ships in 12 - 19 working days

A comprehensive guide to automated statistical data cleaning The production of clean data is a complex and time-consuming process that requires both technical know-how and statistical expertise. Statistical Data Cleaning brings together a wide range of techniques for cleaning textual, numeric or categorical data. This book examines technical data cleaning methods relating to data representation and data structure. A prominent role is given to statistical data validation, data cleaning based on predefined restrictions, and data cleaning strategy. Key features: Focuses on the automation of data cleaning methods, including both theory and applications written in R. Enables the reader to design data cleaning processes for either one-off analytical purposes or for setting up production systems that clean data on a regular basis. Explores statistical techniques for solving issues such as incompleteness, contradictions and outliers, integration of data cleaning components and quality monitoring. Supported by an accompanying website featuring data and R code. This book enables data scientists and statistical analysts working with data to deepen their understanding of data cleaning as well as to upgrade their practical data cleaning skills. It can also be used as material for a course in data cleaning and analyses.

The Rise of Artificial Intelligence and Big Data in Pandemic Society - Crises, Risk and Sacrifice in a New World Order... The Rise of Artificial Intelligence and Big Data in Pandemic Society - Crises, Risk and Sacrifice in a New World Order (Hardcover, 1st ed. 2022)
Kazuhiko Shibuya
R4,247 Discovery Miles 42 470 Ships in 12 - 19 working days

This book presents a study of the COVID-19 pandemic using computational social scientific analysis that draws from, and employs, statistics and simulations. Combining approaches in crisis management, risk assessment and mathematical modelling, the work also draws from the philosophy of sacrifice and futurology. It makes an original contribution to the important issue of the stability of society by highlighting two significant factors: the COVID-19 crisis as a catalyst for change and the rise of AI and Big Data in managing society. It also emphasizes the nature and importance of sacrifices and the role of politics in the distribution of sacrifices. The book considers the treatment of AI and Big Data and their use to both "good" and "bad" ends, exposing the inevitability of these tools being used. Relevant to both policymakers and social scientists interested in the influence of AI and Big Data on the structure of society, the book re-evaluates the ways we think of lifestyles, economic systems and the balance of power in tandem with digital transformation.

Understanding Regression Analysis - A Conditional Distribution Approach (Hardcover): Peter H. Westfall, Andrea L. Arias Understanding Regression Analysis - A Conditional Distribution Approach (Hardcover)
Peter H. Westfall, Andrea L. Arias
R3,994 Discovery Miles 39 940 Ships in 9 - 17 working days

Understanding Regression Analysis unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks, and decision trees under a common umbrella -- namely, the conditional distribution model. It explains why the conditional distribution model is the correct model, and it also explains (proves) why the assumptions of the classical regression model are wrong. Unlike other regression books, this one from the outset takes a realistic approach that all models are just approximations. Hence, the emphasis is to model Nature's processes realistically, rather than to assume (incorrectly) that Nature works in particular, constrained ways. Key features of the book include: Numerous worked examples using the R software Key points and self-study questions displayed "just-in-time" within chapters Simple mathematical explanations ("baby proofs") of key concepts Clear explanations and applications of statistical significance (p-values), incorporating the American Statistical Association guidelines Use of "data-generating process" terminology rather than "population" Random-X framework is assumed throughout (the fixed-X case is presented as a special case of the random-X case) Clear explanations of probabilistic modelling, including likelihood-based methods Use of simulations throughout to explain concepts and to perform data analyses This book has a strong orientation towards science in general, as well as chapter-review and self-study questions, so it can be used as a textbook for research-oriented students in the social, biological and medical, and physical and engineering sciences. As well, its mathematical emphasis makes it ideal for a text in mathematics and statistics courses. With its numerous worked examples, it is also ideally suited to be a reference book for all scientists.

Real World Health Care Data Analysis - Causal Methods and Implementation Using SAS (Hardcover): Douglas Faries, Xiang Zhang,... Real World Health Care Data Analysis - Causal Methods and Implementation Using SAS (Hardcover)
Douglas Faries, Xiang Zhang, Zbigniew Kadziola
R2,702 Discovery Miles 27 020 Ships in 12 - 19 working days
Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in R (Hardcover, 2nd ed. 2022):... Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in R (Hardcover, 2nd ed. 2022)
Christian Heumann, Michael Schomaker, Shalabh
R2,693 Discovery Miles 26 930 Ships in 10 - 15 working days

Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.

Numerical Mathematics and Advanced  Applications - ENUMATH 2013 - Proceedings of ENUMATH 2013, the 10th European Conference on... Numerical Mathematics and Advanced Applications - ENUMATH 2013 - Proceedings of ENUMATH 2013, the 10th European Conference on Numerical Mathematics and Advanced Applications, Lausanne, August 2013 (Hardcover, 2015 ed.)
Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, Marco Picasso
R4,534 Discovery Miles 45 340 Ships in 10 - 15 working days

This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.

Encyclopedia of Robust Control: Volume V (Advanced Topics) (Hardcover): Zac Fredericks Encyclopedia of Robust Control: Volume V (Advanced Topics) (Hardcover)
Zac Fredericks
R2,220 Discovery Miles 22 200 Ships in 12 - 19 working days
Introduction to Statistics - Using Interactive MM*Stat Elements (Hardcover, 1st ed. 2015): Wolfgang Karl Hardle, Sigbert... Introduction to Statistics - Using Interactive MM*Stat Elements (Hardcover, 1st ed. 2015)
Wolfgang Karl Hardle, Sigbert Klinke, Bernd Roenz
R3,369 Discovery Miles 33 690 Ships in 12 - 19 working days

This book covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students' knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc.

A MATLAB (R) Primer for Technical Programming for Materials Science and Engineering (Paperback): Leonid Burstein A MATLAB (R) Primer for Technical Programming for Materials Science and Engineering (Paperback)
Leonid Burstein
R3,205 Discovery Miles 32 050 Ships in 12 - 19 working days

A MATLAB (R) Primer for Technical Programming for Materials Science and Engineering draws on examples from the field, providing the latest information on this programming tool that is targeted towards materials science. The book enables non-programmers to master MATLAB (R) in order to solve problems in materials science, assuming only a modest mathematical background. In addition, the book introduces programming and technical concepts in a logical manner to help students use MATLAB (R) for subsequent projects. This title offers materials scientists who are non-programming specialists with a coherent and focused introduction to MATLAB (R).

A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Hardcover, 1st ed. 2021): Domingo... A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Hardcover, 1st ed. 2021)
Domingo Morales, Maria Dolores Esteban, Agustin Perez, Tomas Hobza
R3,939 Discovery Miles 39 390 Ships in 12 - 19 working days

This advanced textbook explores small area estimation techniques, covers the underlying mathematical and statistical theory and offers hands-on support with their implementation. It presents the theory in a rigorous way and compares and contrasts various statistical methodologies, helping readers understand how to develop new methodologies for small area estimation. It also includes numerous sample applications of small area estimation techniques. The underlying R code is provided in the text and applied to four datasets that mimic data from labor markets and living conditions surveys, where the socioeconomic indicators include the small area estimation of total unemployment, unemployment rates, average annual household incomes and poverty indicators. Given its scope, the book will be useful for master and PhD students, and for official and other applied statisticians.

Recent Advances in Natural Computing - Selected Results from the IWNC 7 Symposium (Hardcover, 2015 ed.): Yasuhiro Suzuki,... Recent Advances in Natural Computing - Selected Results from the IWNC 7 Symposium (Hardcover, 2015 ed.)
Yasuhiro Suzuki, Masami Hagiya
R2,860 Discovery Miles 28 600 Ships in 10 - 15 working days

This book highlights recent advances in natural computing, including biology and its theory, bio-inspired computing, computational aesthetics, computational models and theories, computing with natural media, philosophy of natural computing and educational technology. It presents extended versions of the best papers selected from the symposium "7th International Workshop on Natural Computing" (IWNC7), held in Tokyo, Japan, in 2013. The target audience is not limited to researchers working in natural computing but also those active in biological engineering, fine/media art design, aesthetics and philosophy.

Matlab (R) in Quality Assurance Sciences (Hardcover): L. Burstein Matlab (R) in Quality Assurance Sciences (Hardcover)
L. Burstein
R3,734 Discovery Miles 37 340 Ships in 12 - 19 working days

- includes MATLABr fundamentals, matrices, arrays, general graphics and specialized plots in quality assurance problems, script files, ordinary and partial differential equations - gives calculation of six sigma, total quality management, time series forecasting, reliability, process improvement, metrology, quality control and assurance, measurement and testing techniques - provides tools for graphical presentation, basic and special statistics and testing, ordinary and partial differential solvers, and fitting tools - includes comprehensive command information in tables Many books are available on MATLABr programming for engineers in general or in some specific area, but none in the highly topical field of quality assurance (QA). MATLABr in quality assurance sciences fills this gap as a compact guide for students, engineers, and scientists in this field. It concentrates on MATLABr fundamentals with examples of application to a wide range of current problems from general, nano and bio-technology, and statistical control, to medicine and industrial management. Examples cover both the school and advanced level; comprising calculations of total quality management, six sigma, time series, process improvement, metrology, quality control, human factors in quality assurance, measurement and testing techniques, quality project and function management, and customer satisfaction. The book covers key topics, including: the basics of software with examples; graphics and representations; numerical computation, scripts and functions for QA calculations; ODE and PDEPE solvers applied to QA problems; curve fitting and time series tool interfaces in calculations of quality; and statistics calculations applied to quality testing.

Statistics with R - A Beginner's Guide (Hardcover, 2nd Revised edition): Robert Stinerock Statistics with R - A Beginner's Guide (Hardcover, 2nd Revised edition)
Robert Stinerock
R4,055 Discovery Miles 40 550 Ships in 12 - 19 working days

Statistics is made simple with this award-winning guide to using R and applied statistical methods. With a clear step-by-step approach explained using real world examples, learn the practical skills you need to use statistical methods in your research from an expert with over 30 years of teaching experience. With a wealth of hands-on exercises and online resources created by the author, practice your skills using the data sets and R scripts from the book with detailed screencasts that accompany each script. This book is ideal for anyone looking to: * Complete an introductory course in statistics * Prepare for more advanced statistical courses * Gain the transferable analytical skills needed to interpret research from across the social sciences * Learn the technical skills needed to present data visually * Acquire a basic competence in the use of R and RStudio. This edition also includes a gentle introduction to Bayesian methods integrated throughout. The author has created a wide range of online resources, including: over 90 R scripts, 36 datasets, 37 screen casts, complete solutions for all exercises, and 130 multiple-choice questions to test your knowledge.

Applied Statistics for Environmental Science with R (Paperback): Abbas F. M. Alkarkhi, Wasin A. A. Alqaraghuli Applied Statistics for Environmental Science with R (Paperback)
Abbas F. M. Alkarkhi, Wasin A. A. Alqaraghuli
R2,590 Discovery Miles 25 900 Ships in 12 - 19 working days

Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems.

Encyclopedia of Robust Control: Volume IV (Applied Principles) (Hardcover): Zac Fredericks Encyclopedia of Robust Control: Volume IV (Applied Principles) (Hardcover)
Zac Fredericks
R2,220 Discovery Miles 22 200 Ships in 12 - 19 working days
Statistical Analysis of Questionnaires - A Unified Approach Based on R and Stata (Paperback): Francesco Bartolucci, Silvia... Statistical Analysis of Questionnaires - A Unified Approach Based on R and Stata (Paperback)
Francesco Bartolucci, Silvia Bacci, Michela Gnaldi
R1,481 Discovery Miles 14 810 Ships in 9 - 17 working days

Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata presents special statistical methods for analyzing data collected by questionnaires. The book takes an applied approach to testing and measurement tasks, mirroring the growing use of statistical methods and software in education, psychology, sociology, and other fields. It is suitable for graduate students in applied statistics and psychometrics and practitioners in education, health, and marketing. The book covers the foundations of classical test theory (CTT), test reliability, validity, and scaling as well as item response theory (IRT) fundamentals and IRT for dichotomous and polytomous items. The authors explore the latest IRT extensions, such as IRT models with covariates, multidimensional IRT models, IRT models for hierarchical and longitudinal data, and latent class IRT models. They also describe estimation methods and diagnostics, including graphical diagnostic tools, parametric and nonparametric tests, and differential item functioning. Stata and R software codes are included for each method. To enhance comprehension, the book employs real datasets in the examples and illustrates the software outputs in detail. The datasets are available on the authors' web page.

Qualitative Research Using R: A Systematic Approach (Hardcover, 1st ed. 2019): Yanto Chandra, Liang Shang Qualitative Research Using R: A Systematic Approach (Hardcover, 1st ed. 2019)
Yanto Chandra, Liang Shang
R2,860 Discovery Miles 28 600 Ships in 12 - 19 working days

This book highlights the rise of the Strauss-Corbin-Gioia (SCG) methodology as an important paradigm in qualitative research in the social sciences, and demonstrates how the SCG methodology can be operationalized and enhanced using RQDA. It also provides a technical and methodological review of RQDA as a new CAQDAS tool. Covering various techniques, it offers methodological guidance on how to connect CAQDAS tool with accepted paradigms, particularly the SCG methodology, to produce high- quality qualitative research and includes step-by-step instructions on using RQDA under the SCG qualitative research paradigm. Lastly, it comprehensively discusses methodological issues in qualitative research. This book is useful for qualitative scholars, PhD/postdoctoral students and students taking qualitative methodology courses in the broader social sciences, and those who are familiar with programming languages and wish to cross over to qualitative data analysis. "At long last! We now have a qualitative data-analysis approach that enhances the use of a systematic methodology for conducting qualitative research. Chandra and Shang should be applauded for making our research lives a lot easier. And to top it all off, it's free." Dennis Gioia, Robert & Judith Auritt Klein Professor of Management, Smeal College of Business at Penn State University, USA "While we have a growing library of books on qualitative data analysis, this new volume provides a much needed new perspective. By combining a sophisticated understanding of qualitative research with an impressive command of R, the authors provide an important new toolkit for qualitative researchers that will improve the depth and rigor of their data analysis. And given that R is open source and freely available, their approach solves the all too common problem of access that arises from the prohibitive cost of more traditional qualitative data analysis software. Students and seasoned researchers alike should take note!" Nelson Phillips, Abu Dhabi Chamber Chair in Strategy and Innovation, Imperial College Business School, United Kingdom "This helpful book does what it sets out to do: offers a guide for systematizing and building a trail of evidence by integrating RQDA with the Gioia approach to analyzing inductive data. The authors provide easy-to-follow yet detailed instructions underpinned by sound logic, explanations and examples. The book makes me want to go back to my old data and start over!" Nicole Coviello, Lazaridis Research Professor, Wilfrid Laurier University, Canada "Qualitative Research Using R: A Systematic Approach guides aspiring researchers through the process of conducting a qualitative study with the assistance of the R programming language. It is the only textbook that offers "click-by-click" instruction in how to use RQDA software to carry out analysis. This book will undoubtedly serve as a useful resource for those interested in learning more about R as applied to qualitative or mixed methods data analysis. Helpful as well is the six-step procedure for carrying out a grounded-theory type study (the "Gioia approach") with the support of RQDA software, making it a comprehensive resource for those interested in innovative qualitative methods and uses of CAQDAS tools." Trena M. Paulus, Professor of Education, University of Georgia, USA

Applied Multiple Imputation - Advantages, Pitfalls, New Developments and Applications in R (Hardcover, 1st ed. 2020): Kristian... Applied Multiple Imputation - Advantages, Pitfalls, New Developments and Applications in R (Hardcover, 1st ed. 2020)
Kristian Kleinke, Jost Reinecke, Daniel Salfran, Martin Spiess
R2,871 Discovery Miles 28 710 Ships in 12 - 19 working days

This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice). The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master's and PhD students with a sound basic knowledge of statistics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Creating Modern Neuroscience: The…
Gordon M Shepherd MD, DPhil Hardcover R2,369 Discovery Miles 23 690
Object-Oriented Programming A Unified…
Giuseppe Castagna Hardcover R3,097 Discovery Miles 30 970
Computational Models for Neuroscience…
Robert Hecht-Nielsen, Thomas McKenna Hardcover R4,383 Discovery Miles 43 830
Object-Oriented Discrete-Event…
Jose M. Garrido Hardcover R4,505 Discovery Miles 45 050
Microwave Radio Transmission Design…
Trevor Manning Hardcover R3,854 Discovery Miles 38 540
Attention in a Social World
Michael I. Posner Hardcover R2,501 Discovery Miles 25 010
Frontiers in Arterial Chemoreception…
Patricio Zapata, Etc Hardcover R2,634 Discovery Miles 26 340
Slow Potential Changes in the Human…
W.C. McCallum, S. H. Curry Hardcover R5,767 Discovery Miles 57 670
Madam & Eve: Family Meeting
Stephen Francis Paperback R220 R203 Discovery Miles 2 030
Make: Volume 66
Mike Senese Paperback R249 R209 Discovery Miles 2 090

 

Partners