![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
To write an accomplished program in the DATA step of SAS (R), programmers must understand programming logic and know how to implement and even create their own programming algorithm. Handbook of SAS (R) DATA Step Programming shows readers how best to manage and manipulate data by using the DATA step. The book helps novices avoid common mistakes resulting from a lack of understanding fundamental and unique SAS programming concepts. It explains that learning syntax does not solve all problems; rather, a thorough comprehension of SAS processing is needed for successful programming. The author also guides readers through a programming task. In most of the examples, the author first presents strategies and steps for solving the problem, then offers a solution, and finally gives a more detailed explanation of the solution. Understanding the DATA steps, particularly the program data vector (PDV), is critical to proper data manipulation and management in SAS. This book helps SAS programmers thoroughly grasp the concept of DATA step processing and write accurate programs in the DATA step. Numerous supporting materials, including data sets and programs used in the text, are available on the book's CRC Press web page.
While teaching the Numerical Methods for Engineers course over the last 15 years, the author found a need for a new textbook, one that was less elementary, provided applications and problems better suited for chemical engineers, and contained instruction in Visual Basic (R) for Applications (VBA). This led to six years of developing teaching notes that have been enhanced to create the current textbook, Numerical Methods for Chemical Engineers Using Excel (R), VBA, and MATLAB (R). Focusing on Excel gives the advantage of it being generally available, since it is present on every computer-PC and Mac-that has Microsoft Office installed. The VBA programming environment comes with Excel and greatly enhances the capabilities of Excel spreadsheets. While there is no perfect programming system, teaching this combination offers knowledge in a widely available program that is commonly used (Excel) as well as a popular academic software package (MATLAB). Chapters cover nonlinear equations, Visual Basic, linear algebra, ordinary differential equations, regression analysis, partial differential equations, and mathematical programming methods. Each chapter contains examples that show in detail how a particular numerical method or programming methodology can be implemented in Excel and/or VBA (or MATLAB in chapter 10). Most of the examples and problems presented in the text are related to chemical and biomolecular engineering and cover a broad range of application areas including thermodynamics, fluid flow, heat transfer, mass transfer, reaction kinetics, reactor design, process design, and process control. The chapters feature "Did You Know" boxes, used to remind readers of Excel features. They also contain end-of-chapter exercises, with solutions provided.
The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019.
This book offers a modern and accessible introduction to Statistical Inference, the science of inferring key information from data. Aimed at beginning undergraduate students in mathematics, it presents the concepts underpinning frequentist statistical theory. Written in a conversational and informal style, this concise text concentrates on ideas and concepts, with key theorems stated and proved. Detailed worked examples are included and each chapter ends with a set of exercises, with full solutions given at the back of the book. Examples using R are provided throughout the book, with a brief guide to the software included. Topics covered in the book include: sampling distributions, properties of estimators, confidence intervals, hypothesis testing, ANOVA, and fitting a straight line to paired data. Based on the author's extensive teaching experience, the material of the book has been honed by student feedback for over a decade. Assuming only some familiarity with elementary probability, this textbook has been devised for a one semester first course in statistics.
A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source. Key features: Allows you to learn R and Python in parallel Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools - data.table and pandas Provides a concise and accessible presentation Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc. Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.
Complex Survey Data Analysis with SAS (R) is an invaluable resource for applied researchers analyzing data generated from a sample design involving any combination of stratification, clustering, unequal weights, or finite population correction factors. After clearly explaining how the presence of these features can invalidate the assumptions underlying most traditional statistical techniques, this book equips readers with the knowledge to confidently account for them during the estimation and inference process by employing the SURVEY family of SAS/STAT (R) procedures. The book offers comprehensive coverage of the most essential topics, including: Drawing random samples Descriptive statistics for continuous and categorical variables Fitting and interpreting linear and logistic regression models Survival analysis Domain estimation Replication variance estimation methods Weight adjustment and imputation methods for handling missing data The easy-to-follow examples are drawn from real-world survey data sets spanning multiple disciplines, all of which can be downloaded for free along with syntax files from the author's website: http://mason.gmu.edu/~tlewis18/. While other books may touch on some of the same issues and nuances of complex survey data analysis, none features SAS exclusively and as exhaustively. Another unique aspect of this book is its abundance of handy workarounds for certain techniques not yet supported as of SAS Version 9.4, such as the ratio estimator for a total and the bootstrap for variance estimation. Taylor H. Lewis is a PhD graduate of the Joint Program in Survey Methodology at the University of Maryland, College Park, and an adjunct professor in the George Mason University Department of Statistics. An avid SAS user for 15 years, he is a SAS Certified Advanced programmer and a nationally recognized SAS educator who has produced dozens of papers and workshops illustrating how to efficiently and effectively conduct statistical analyses using SAS.
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13-15, 2017.
Designed for engineers, computer scientists, and physicists or for use as a textbook in computational courses, Applied Linear Algebra & Optimization Using MATLAB, provides the reader with numerous applications, m-files, and practical examples to solve problems. Balancing theoretical concepts with computational speed and accuracy, the book includes numerous short programs in MATLAB that can be used to solve problems involving systems of linear equations, matrices, vectors, computer graphics, and more. The book is accompanied by a CD-ROM with all of the figures, m-files for all of the programs, and MATLAB simulations from industry. Complete solutions and Microsoft PowerPoint slides are available to instructors for use as a textbook.Brief Table of Contents: 1. Matrices and Linear Systems. 2. Iterative Methods for Linear Systems. 3. The Eigenvalue Problems. 4. Numerical Computation of Eigenvalues. 5. Interpolation and Approximation. 6. Linear Programming. 7. Nonlinear Programming. Appendices. About the CD-ROM
This book introduces recently developed mixed finite element methods for large-scale geophysical flows that preserve essential numerical properties for accurate simulations. The methods are presented using standard models of atmospheric flows and are implemented using the Firedrake finite element library. Examples guide the reader through problem formulation, discretisation, and automated implementation. The so-called "compatible" finite element methods possess key numerical properties which are crucial for real-world operational weather and climate prediction. The authors summarise the theory and practical implications of these methods for model problems, introducing the reader to the Firedrake package and providing open-source implementations for all the examples covered. Students and researchers with engineering, physics, mathematics, or computer science backgrounds will benefit from this book. Those readers who are less familiar with the topic are provided with an overview of geophysical fluid dynamics.
This book constitutes the refereed proceedings of the 15th Conference on Computability in Europe, CiE 2019, held in Durham, UK, in July 2019. The 20 revised full papers presented were carefully reviewed and selected from 35 submissions. In addition, this volume includes 7 invited papers. The conference CiE 2018 had the following six special sessions: computational neuroscience, history and philosophy of computing, lowness notions in computability, probabilistic programming and higher-order computation, smoothed and probabilistic analysis of algorithms, and transnite computations.
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
Go from total MATLAB newbie to plotting graphs and solving equations in a flash! MATLAB is one of the most powerful and commonly used tools in the STEM field. But did you know it doesn't take an advanced degree or a ton of computer experience to learn it? MATLAB For Dummies is the roadmap you've been looking for to simplify and explain this feature-filled tool. This handy reference walks you through every step of the way as you learn the MATLAB language and environment inside-and-out. Starting with straightforward basics before moving on to more advanced material like Live Functions and Live Scripts, this easy-to-read guide shows you how to make your way around MATLAB with screenshots and newly updated procedures. It includes: A comprehensive introduction to installing MATLAB, using its interface, and creating and saving your first file Fully updated to include the 2020 and 2021 updates to MATLAB, with all-new screenshots and up-to-date procedures Enhanced debugging procedures and use of the Symbolic Math Toolbox Brand new instruction on working with Live Scripts and Live Functions, designing classes, creating apps, and building projects Intuitive walkthroughs for MATLAB's advanced features, including importing and exporting data and publishing your work Perfect for STEM students and new professionals ready to master one of the most powerful tools in the fields of engineering, mathematics, and computing, MATLAB For Dummies is the simplest way to go from complete newbie to power user faster than you would have thought possible.
This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas - and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.
Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
This book contains the refereed proceedings of the 14th International Symposium on Mathematical Morphology, ISMM 2019, held in Saarbrucken, Germany, in July 2019. The 40 revised full papers presented together with one invited talk were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on Theory, Discrete Topology and Tomography, Trees and Hierarchies, Multivariate Morphology, Computational Morphology, Machine Learning, Segmentation, Applications in Engineering, and Applications in (Bio)medical Imaging.
This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers' understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.
This book includes a wide selection of the papers presented at the 48th Scientific Meeting of the Italian Statistical Society (SIS2016), held in Salerno on 8-10 June 2016. Covering a wide variety of topics ranging from modern data sources and survey design issues to measuring sustainable development, it provides a comprehensive overview of the current Italian scientific research in the fields of open data and big data in public administration and official statistics, survey sampling, ordinal and symbolic data, statistical models and methods for network data, time series forecasting, spatial analysis, environmental statistics, economic and financial data analysis, statistics in the education system, and sustainable development. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.
A computer algebra system such as Mathematica (R) is able to do much more than just numerics: This text shows how to tackle real mathematical problems from basic analysis. The reader learns how Mathematica (R) represents domains, qualifiers and limits to implement actual proofs - a requirement to unlock the huge potential of Mathematica (R) for a variety of applications.
Multiple criteria decision aid (MCDA) methods are illustrated in this book through theoretical and computational techniques utilizing Python. Existing methods are presented in detail with a step by step learning approach. Theoretical background is given for TOPSIS, VIKOR, PROMETHEE, SIR, AHP, goal programming, and their variations. Comprehensive numerical examples are also discussed for each method in conjunction with easy to follow Python code. Extensions to multiple criteria decision making algorithms such as fuzzy number theory and group decision making are introduced and implemented through Python as well. Readers will learn how to implement and use each method based on the problem, the available data, the stakeholders involved, and the various requirements needed. Focusing on the practical aspects of the multiple criteria decision making methodologies, this book is designed for researchers, practitioners and advanced graduate students in the applied mathematics, information systems, operations research and business administration disciplines, as well as other engineers and scientists oriented in interdisciplinary research. Readers will greatly benefit from this book by learning and applying various MCDM/A methods. (Adiel Teixeira de Almeida, CDSID-Center for Decision System and Information Development, Universidade Federal de Pernambuco, Recife, Brazil) Promoting the development and application of multicriteria decision aid is essential to ensure more ethical and sustainable decisions. This book is a great contribution to this objective. It is a perfect blend of theory and practice, providing potential users and researchers with the theoretical bases of some of the best-known methods as well as with the computing tools needed to practice, to compare and to put these methods to use. (Jean-Pierre Brans, Vrije Universiteit Brussel, Brussels, Belgium) This book is intended for researchers, practitioners and students alike in decision support who wish to familiarize themselves quickly and efficiently with multicriteria decision aiding algorithms. The proposed approach is original, as it presents a selection of methods from the theory to the practical implementation in Python, including a detailed example. This will certainly facilitate the learning of these techniques, and contribute to their effective dissemination in applications. (Patrick Meyer, IMT Atlantique, Lab-STICC, Univ. Bretagne Loire, Brest, France)
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.
This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham's Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fields of data analysis and machine learning to write computer programs based upon this principle. MML inference has been around for 50 years and yet only one highly technical book has been written about the subject. The majority of research in the field has been backed by specialised one-off programs but this book includes a library of general MML-based software, in Java. The Java source code is available under the GNU GPL open-source license. The software library is documented using Javadoc which produces extensive cross referenced HTML manual pages. Every probability distribution and statistical model that is described in the book is implemented and documented in the software library. The library may contain a component that directly solves a reader's inference problem, or contain components that can be put together to solve the problem, or provide a standard interface under which a new component can be written to solve the problem. This book will be of interest to application developers in the fields of machine learning and statistics as well as academics, postdocs, programmers and data scientists. It could also be used by third year or fourth year undergraduate or postgraduate students.
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method - as distinct from a 'science' related to any one type of phenomena - is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers. |
![]() ![]() You may like...
Metal, Metal-Oxides and Metal-Organic…
Saravanan Rajendran, Mu Naushad, …
Hardcover
R4,329
Discovery Miles 43 290
|