![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials. Designed for those who need to learn how micromechanical approaches can help understand the behaviour of bodies with voids, inclusions, defects, this book is perfect for readers without a programming background. Thoroughly introducing the concept of micromechanics, it helps readers assess the deformation of solids at a localized level and analyse a body with microstructures. The author approaches this analysis using the computer algebra system Mathematica, which facilitates complex index manipulations and mathematical expressions accurately. The book begins by covering the general topics of continuum mechanics such as coordinate transformations, kinematics, stress, constitutive relationship and material symmetry. Mathematica programming is also introduced with accompanying examples. In the second half of the book, an analysis of heterogeneous materials with emphasis on composites is covered. Takes a practical approach by using Mathematica, one of the most popular programmes for symbolic computation * Introduces the concept of micromechanics with worked-out examples using Mathematica code for ease of understanding * Logically begins with the essentials of the topic, such as kinematics and stress, before moving to more advanced areas * Applications covered include the basics of continuum mechanics, Eshelby's method, analytical and semi-analytical approaches for materials with inclusions (composites) in both infinite and finite matrix media and thermal stresses for a medium with inclusions, all with Mathematica examples * Features a problem and solution section on the book s companion website, useful for students new to the programme
In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: * Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. * Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles * Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. * Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. * Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.
Mathematica (R) in the Laboratory is a hands-on guide which shows how to harness the power and flexibility of Mathematica in the control of data-acquisition equipment and the analysis of experimental data. It explains how to use Mathematica to import, manipulate, visualise and analyse data from existing files. The generation and export of test data are also covered. The control of laboratory equipment is dealt with in detail, including the use of Mathematica's MathLink (R) system in instrument control, data processing, and interfacing. Many practical examples are given, which can either be used directly or adapted to suit a particular application. The book sets out clearly how Mathematica can provide a truly unified data-handling environment, and will be invaluable to anyone who collects or analyses experimental data, including astronomers, biologists, chemists, mathematicians, geologists, physicists and engineers. The book is fully compatible with Mathematica 3.0.
Mathematica (R) in the Laboratory is a hands-on guide which shows how to harness the power and flexibility of Mathematica in the control of data-acquisition equipment and the analysis of experimental data. It explains how to use Mathematica to import, manipulate, visualise and analyse data from existing files. The generation and export of test data are also covered. The control of laboratory equipment is dealt with in detail, including the use of Mathematica's MathLink (R) system in instrument control, data processing, and interfacing. Many practical examples are given, which can either be used directly or adapted to suit a particular application. The book sets out clearly how Mathematica can provide a truly unified data-handling environment, and will be invaluable to anyone who collects or analyses experimental data, including astronomers, biologists, chemists, mathematicians, geologists, physicists and engineers. The book is fully compatible with Mathematica 3.0.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
This open access book provides insights into the novel Locally Refined B-spline (LR B-spline) surface format, which is suited for representing terrain and seabed data in a compact way. It provides an alternative to the well know raster and triangulated surface representations. An LR B-spline surface has an overall smooth behavior and allows the modeling of local details with only a limited growth in data volume. In regions where many data points belong to the same smooth area, LR B-splines allow a very lean representation of the shape by locally adapting the resolution of the spline space to the size and local shape variations of the region. The iterative method can be modified to improve the accuracy in particular domains of a point cloud. The use of statistical information criterion can help determining the optimal threshold, the number of iterations to perform as well as some parameters of the underlying mathematical functions (degree of the splines, parameter representation). The resulting surfaces are well suited for analysis and computing secondary information such as contour curves and minimum and maximum points. Also deformation analysis are potential applications of fitting point clouds with LR B-splines.
Intended as a companion for textbooks in mathematical methods for science and engineering, this book presents a large number of numerical topics and exercises together with discussions of methods for solving such problems using Mathematica(R). The accompanying CD contains Mathematica Notebooks for illustrating most of the topics in the text and for solving problems in mathematical physics. Although it is primarily designed for use with the author's "Mathematical Methods: For Students of Physics and Related Fields," the discussions in the book sufficiently self-contained that the book can be used as a supplement to any of the standard textbooks in mathematical methods for undergraduate students of physical sciences or engineering.
Age-Period-Cohort analysis has a wide range of applications, from chronic disease incidence and mortality data in public health and epidemiology, to many social events (birth, death, marriage, etc) in social sciences and demography, and most recently investment, healthcare and pension contribution in economics and finance. Although APC analysis has been studied for the past 40 years and a lot of methods have been developed, the identification problem has been a major hurdle in analyzing APC data, where the regression model has multiple estimators, leading to indetermination of parameters and temporal trends. A Practical Guide to Age-Period Cohort Analysis: The Identification Problem and Beyond provides practitioners a guide to using APC models as well as offers graduate students and researchers an overview of the current methods for APC analysis while clarifying the confusion of the identification problem by explaining why some methods address the problem well while others do not. Features * Gives a comprehensive and in-depth review of models and methods in APC analysis. * Provides an in-depth explanation of the identification problem and statistical approaches to addressing the problem and clarifying the confusion. * Utilizes real data sets to illustrate different data issues that have not been addressed in the literature, including unequal intervals in age and period groups, etc. Contains step-by-step modeling instruction and R programs to demonstrate how to conduct APC analysis and how to conduct prediction for the future Reflects the most recent development in APC modeling and analysis including the intrinsic estimator Wenjiang Fu is a professor of statistics at the University of Houston. Professor Fu's research interests include modeling big data, applied statistics research in health and human genome studies, and analysis of complex economic and social science data.
This COMPSTAT 2002 book contains the Keynote, Invited, and Full Contributed papers presented in Berlin, August 2002. A companion volume including Short Communications and Posters is published on CD. The COMPSTAT 2002 is the 15th conference in a serie of biannual conferences with the objective to present the latest developments in Computational Statistics and is taking place from August 24th to August 28th, 2002. Previous COMPSTATs were in Vienna (1974), Berlin (1976), Leiden (1978), Edinburgh (1980), Toulouse (1982), Pra ue (1984), Rome (1986), Copenhagen (1988), Dubrovnik (1990), Neuchatel (1992), Vienna (1994), Barcelona (1996), Bris tol (1998) and Utrecht (2000). COMPSTAT 2002 is organised by CASE, Center of Applied Statistics and Eco nomics at Humboldt-Universitat zu Berlin in cooperation with F'reie Universitat Berlin and University of Potsdam. The topics of COMPSTAT include methodological applications, innovative soft ware and mathematical developments, especially in the following fields: statistical risk management, multivariate and robust analysis, Markov Chain Monte Carlo Methods, statistics of E-commerce, new strategies in teaching (Multimedia, In ternet), computerbased sampling/questionnaires, analysis of large databases (with emphasis on computing in memory), graphical tools for data analysis, classification and clustering, new statistical software and historical development of software."
Commonly there is no natural place in a traditional curriculum for mathematics or statistics, where a bridge between theory and practice fits into. On the other hand, the demand for an education designed to supplement theoretical training by practial experience has been rapidly increasing. There exists, consequently, a bit of a dichotomy between theoretical and applied statistics, and this book tries to straddle that gap. It links up the theory of a selection of statistical procedures used in general practice with their application to real world data sets using the statistical software package SAS (Statistical Analysis System). These applications are intended to illustrate the theory and to provide, simultaneously, the ability to use the knowledge effectively and readily in execution.
Monte Carlo statistical methods, particularly those based on Markov chains, are now an essential component of the standard set of techniques used by statisticians. This new edition has been revised towards a coherent and flowing coverage of these simulation techniques, with incorporation of the most recent developments in the field. In particular, the introductory coverage of random variable generation has been totally revised, with many concepts being unified through a fundamental theorem of simulation There are five completely new chapters that cover Monte Carlo control, reversible jump, slice sampling, sequential Monte Carlo, and perfect sampling. There is a more in-depth coverage of Gibbs sampling, which is now contained in three consecutive chapters. The development of Gibbs sampling starts with slice sampling and its connection with the fundamental theorem of simulation, and builds up to two-stage Gibbs sampling and its theoretical properties. A third chapter covers the multi-stage Gibbs sampler and its variety of applications. Lastly, chapters from the previous edition have been revised towards easier access, with the examples getting more detailed coverage. This textbook is intended for a second year graduate course, but will also be useful to someone who either wants to apply simulation techniques for the resolution of practical problems or wishes to grasp the fundamental principles behind those methods. The authors do not assume familiarity with Monte Carlo techniques (such as random variable generation), with computer programming, or with any Markov chain theory (the necessary concepts are developed in Chapter 6). A solutions manual, which coversapproximately 40% of the problems, is available for instructors who require the book for a course. Christian P. Robert is Professor of Statistics in the Applied Mathematics Department at UniversitA(c) Paris Dauphine, France. He is also Head of the Statistics Laboratory at the Center for Research in Economics and Statistics (CREST) of the National Institute for Statistics and Economic Studies (INSEE) in Paris, and Adjunct Professor at Ecole Polytechnique. He has written three other books, including The Bayesian Choice, Second Edition, Springer 2001. He also edited Discretization and MCMC Convergence Assessment, Springer 1998. He has served as associate editor for the Annals of Statistics and the Journal of the American Statistical Association. He is a fellow of the Institute of Mathematical Statistics, and a winner of the Young Statistician Award of the SocietiA(c) de Statistique de Paris in 1995. George Casella is Distinguished Professor and Chair, Department of Statistics, University of Florida. He has served as the Theory and Methods Editor of the Journal of the American Statistical Association and Executive Editor of Statistical Science. He has authored three other textbooks: Statistical Inference, Second Edition, 2001, with Roger L. Berger; Theory of Point Estimation, 1998, with Erich Lehmann; and Variance Components, 1992, with Shayle R. Searle and Charles E. McCulloch. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association, and an elected fellow of the International Statistical Institute.
¿The best book on Maple just got better. This lively book is bursting with clear descriptions, revealing examples and top tips. It is gentle enough to act as an introduction and yet sufficiently comprehensive and well organised to serve as a reference manual. Maple Release 7 is significantly different to earlier releases, so this book will appeal even to hardened users who want to catch up fast.¿ ¿Des Higham, University of Strathclyde, UK This book provides an accelerated introduction to Maple for scientific programmers who already have experience in other computer languages (such as C, Pascal, or FORTRAN). It gives an overview of the most commonly used constructs and provides an elementary introduction to Maple programming. This edition of the book has been extensively updated for Maple Release 7 with future releases in mind. This has involved a substantial update of all programs, examples and exercises. Extensive new material has also been added, including an appendix on complex variables in a computer algebra context.
This book constitutes the thoroughly refereed post-proceedings of the 9th International Symposium on Graph Drawing, GD 2001, held in Vienna, Austria, in September 2001.The 32 revised full papers presented were carefully reviewed and selected from 66 paper submissions. Also included are a corrected version of a paper from the predecessor volume, short reports on the software systems exhibition, two papers of the special session on graph exchange formats, and a report on the annual graph drawing contests. The papers are organized in topical sections on hierarchical drawing, planarity, crossing theory, compaction, planar graphs, symmetries, interactive drawing, representations, aesthetics, 2D- and 3D-embeddings, data visualization, floor planning, and planar drawing.
Quantum Methods with Mathematica, the first book of its kind, has achieved worldwide success and critical acclaim.
This book constitutes the thoroughly refereed post-proceedings of the 10th International Symposium on Graph Drawing, GD 2002, held in Irvine, CA, USA, in August 2002.The 24 revised full papers, 9 short papers, and 7 software demonstrations presented together with a report on the GD 2002 graph drawing contest were carefully reviewed and selected from a total of 48 regular paper submissions. All current aspects of graph drawing are addressed.
This book offers a detailed application guide to XploRe - an interactive statistical computing environment. As a guide it contains case studies of real data analysis situations. It helps the beginner in statistical data analysis to learn how XploRe works in real life applications. Many examples from practice are discussed and analysed in full length. Great emphasis is put on a graphic based understanding of the data interrelations. The case studies include: Survival modelling with Cox's proportional hazard regression, Vitamin C data analysis with Quantile Regression, and many others.
All disciplines of science and engineering use numerical methods for complex problem analysis, due to the highly mathematical nature of the field. Analytical methods alone are unable to solve many complex problems engineering students and professionals confront. Introduction to MATLAB (R) Programming for Engineers and Scientists examines the basic elements of code writing, and describes MATLAB (R) methods for solving common engineering problems and applications across the range of engineering disciplines. The text uses a class-tested learning approach and accessible two-color page design to guide students from basic programming to the skills needed for future coursework and engineering practice.
The most widely used statistical method in seasonal adjustment is without doubt that implemented in the X-11 Variant of the Census Method II Seasonal Adjustment Program. Developed at the US Bureau of the Census in the 1950's and 1960's, this computer program has undergone numerous modifications and improvements, leading especially to the X-11-ARIMA software packages in 1975 and 1988 and X-12-ARIMA, the first beta version of which is dated 1998. While these software packages integrate, to varying degrees, parametric methods, and especially the ARIMA models popularized by Box and Jenkins, they remain in essence very close to the initial X-11 method, and it is this "core" that Seasonal Adjustment with the X-11 Method focuses on. With a Preface by Allan Young, the authors document the seasonal adjustment method implemented in the X-11 based software. It will be an important reference for government agencies, macroeconomists, and other serious users of economic data. After some historical notes, the authors outline the X-11 methodology. One chapter is devoted to the study of moving averages with an emphasis on those used by X-11. Readers will also find a complete example of seasonal adjustment, and have a detailed picture of all the calculations. The linear regression models used for trading-day effects and the process of detecting and correcting extreme values are studied in the example. The estimation of the Easter effect is dealt with in a separate chapter insofar as the models used in X-11-ARIMA and X-12-ARIMA are appreciably different. Dominique Ladiray is an Administrateur at the French Institut National de la Statistique et des Etudes Economiques. He is also a Professor at the Ecole Nationale de la Statistique et de l'Administration Economique, and at the Ecole Nationale de la Statistique et de l'Analyse de l'Information. He currently works on short-term economic analysis. Benoît Quenneville is a methodologist with Statistics Canada Time Series Research and Analysis Centre. He holds a Ph.D. from the University of Western Ontario. His research interests are in time series analysis with an emphasis on official statistics.
This book covers the needs of scientists - be they mathematicians, physicists, chemists or engineers - in terms of symbolic computation, and allows them to locate quickly, via a detailed table of contents and index, the method they require for the precise problem they are adressing.It requires no prior experience of symbolic computation, nor specialized mathematical knowledge, and provides quick access to the practical use of symbolic computation software. The organization of the book in mutually independent chapters, each focusing on a specific topic, allows the user to select what is of interest without necessarily reading everything.
MATLAB , a software package developed by Math Works, Inc. is powerful, versatile and interactive software for scientific and technical computations including simulations. Specialised toolboxes provided with several built-in functions are a special feature of MATLAB .
It is generally accepted that training in statistics must include some exposure to the mechanics of computational statistics. This learning guide is intended for beginners in computer-aided statistical data analysis. The prerequisites for XploRe - the statistical computing environment - are an introductory course in statistics or mathematics. The reader of this book should be familiar with basic elements of matrix algebra and the use of HTML browsers. This guide is designed to help students to XploRe their data, to learn (via data interaction) about statistical methods and to disseminate their findings via the HTML outlet. The XploRe APSS (Auto Pilot Support System) is a powerful tool for finding the appropriate statistical technique (quantlet) for the data under analysis. Homogeneous quantlets are combined in XploRe into quantlibs. The XploRe language is intuitive and users with prior experience of other sta tistical programs will find it easy to reproduce the examples explained in this guide. The quantlets in this guide are available on the CD-ROM as well as on the Internet. The statistical operations that the student is guided into range from basic one-dimensional data analysis to more complicated tasks such as time series analysis, multivariate graphics construction, microeconometrics, panel data analysis, etc. The guide starts with a simple data analysis of pullover sales data, then in troduces graphics. The graphics are interactive and cover a wide range of dis plays of statistical data."
This book provides hands-on guidance for researchers and practitioners in criminal justice and criminology to perform statistical analyses and data visualization in the free and open-source software R. It offers a step-by-step guide for beginners to become familiar with the RStudio platform and tidyverse set of packages. This volume will help users master the fundamentals of the R programming language, providing tutorials in each chapter that lay out research questions and hypotheses centering around a real criminal justice dataset, such as data from the National Survey on Drug Use and Health, National Crime Victimization Survey, Youth Risk Behavior Surveillance System, The Monitoring the Future Study, and The National Youth Survey. Users will also learn how to manipulate common sources of agency data, such as calls-for-service (CFS) data. The end of each chapter includes exercises that reinforce the R tutorial examples, designed to help master the software as well as to provide practice on statistical concepts, data analysis, and interpretation of results. The text can be used as a stand-alone guide to learning R or it can be used as a companion guide to an introductory statistics textbook, such as Basic Statistics in Criminal Justice (2020).
Increasing the designer's con dence that a piece of software or hardwareis c- pliant with its speci cation has become a key objective in the design process for software and hardware systems. Many approaches to reaching this goal have been developed, including rigorous speci cation, formal veri cation, automated validation, and testing. Finite-state model checking, as it is supported by the explicit-state model checkerSPIN, is enjoying a constantly increasingpopularity in automated property validation of concurrent, message based systems. SPIN has been in large parts implemented and is being maintained by Gerard Ho- mann, and is freely available via ftp fromnetlib.bell-labs.comor from URL http: //cm.bell-labs.com/cm/cs/what/spin/Man/README.html. The beauty of nite-state model checking lies in the possibility of building \push-button" validation tools. When the state space is nite, the state-space traversal will eventually terminate with a de nite verdict on the property that is being validated. Equally helpful is the fact that in case the property is inv- idated the model checker will return a counterexample, a feature that greatly facilitates fault identi cation. On the downside, the time it takes to obtain a verdict may be very long if the state space is large and the type of properties that can be validated is restricted to a logic of rather limited expressiveness.
This book contains the proceedings of the 12th International Conference on TheoremProvinginHigherOrderLogics(TPHOLs 99), whichwasheldinNice at the University of Nice-Sophia Antipolis, September 14{17, 1999. Thirty- ve papers were submitted as completed research, and each of them was refereed by at least three reviewers appointed by the program committee. Twenty papers were selected for publication in this volume. Followingawell-establishedtraditioninthisseriesofconferences, anumberof researchers also came to discuss work in progress, using short talks and displays at a poster session. These papers are included in a supplementary proceedings volume. These supplementary proceedings take the form of a book published by INRIA in its series of research reports, under the following title: Theorem ProvinginHigherOrderLogics: EmergingTrends1999. The organizers were pleased that Dominique Bolignano, Arjeh Cohen, and Thomas Kropf accepted invitations to be guest speakers for TPHOLs 99. For several years, D. Bolignano has been the leader of the VIP team in the Dyade consortium between INRIA and Bull and is now at the head of a company Trusted Logic. His team has been concentrating on the use of formal methods for the e ective veri cationof securityproperties for protocols used in electronic commerce. A. Cohen has had a key in?uence on the development of computer algebra in The Netherlands and his contribution has been of particular imp- tance to researchersinterested in combining the severalknown methods of using computers to perform mathematical investigations. T. Kropf is an important actor in the Europe-wide project PROSPER, which aims to deliver the be- ts of mechanized formal analysis to system builders in industry."
This compact introduction to Mathematicaaccessible to beginners at all levelspresents the basic elements of the latest version 3 (front End.txt.Int.:, kernel, standard packages). Using examples and exercises not specific to a scientific area, it teaches readers how to effectively solve problems in their own field. The cross-platform CD-ROM contains the entire book in the form of Mathematica notebooks, including color graphics, animations, and hyperlinks, plus the program MathReader. |
You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,501
Discovery Miles 15 010
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,530
Discovery Miles 15 300
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
CABology: Value of Cloud, Analytics and…
Nitin Upadhyay
Hardcover
|