![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.
The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
"A well-written and -illustrated work, recommended for all college libraries. Lower-division undergraduates through faculty." Doing Statistics With SPSS is derived from the authors' many years of experience teaching undergraduates data handling using SPSS. It assumes no prior understanding beyond that of basic mathematical operations and is therefore suitable for anyone undertaking an introductory statistics course as part of a science based undergraduate programme. The text will: enable the reader to make informed choices about what statistical tests to employ; what assumptions are made in using a particular test; demonstrate how to execute the analysis using SPSS; and guide the reader in his//her interpretation of its output. Each chapter ends with an exercise and provides detailed instructions on how to run the analysis using SPSS release 10. Learning is further guided by pointing the reader to particular aspects of the SPSS output and by having the reader engage with specified items of information from the SPSS results.This text is more complete than the alternatives that usually fall into one of two camps. They either provide an explanation of the concepts but no instructions on how to execute the analysis with SPSS, or they are a manual which instructs the reader on how to drive the software but with minimal explanation of what it all means. This book offers the best elements of both in a style that is economical and accessible. Doing Statistics with SPSS will be essential reading for undergraduates in psychology and health-related disciplines, and likely to be of invaluable use to many other students in the social sciences taking a course in statistics.
Introduction to Real World Statistics provides students with the basic concepts and practices of applied statistics, including data management and preparation; an introduction to the concept of probability; data screening and descriptive statistics; various inferential analysis techniques; and a series of exercises that are designed to integrate core statistical concepts. The author's systematic approach, which assumes no prior knowledge of the subject, equips student practitioners with a fundamental understanding of applied statistics that can be deployed across a wide variety of disciplines and professions. Notable features include: short, digestible chapters that build and integrate statistical skills with real-world applications, demonstrating the flexible usage of statistics for evidence-based decision-making statistical procedures presented in a practical context with less emphasis on technical jargon early chapters that build a foundation before presenting statistical procedures SPSS step-by-step detailed instructions designed to reinforce student understanding real world exercises complete with answers chapter PowerPoints and test banks for instructors.
Learn how to develop powerful data analytics applications quickly for SQL Server database administrators and developers. Organizations will be able to sift data and derive the business intelligence needed to drive business decisions and profit. The addition of R to SQL Server 2016 places a powerful analytical processor into an environment most developers are already comfortable with - Visual Studio. This book walks even the newest of users through the creation process of a powerful R-language tool set for use in analyzing and reporting on your data. As a SQL Server database administrator or developer, it is sometimes difficult to stay on the bleeding edge of technology. Microsoft's addition of R to SQL Server 2016 is sure to be a game-changer, and the language will certainly become an integral part of future releases. R is in fact widely used today in statistical and related applications, and its use is only growing. Beginning SQL Server R Services helps you jump on board this important trend by providing good examples with detailed explanations of the WHY and not just the HOW. Walks you through setup and installation of SQL Server R Services. Explains the basics of working with R Tools for Visual Studio. Provides a road map to successfully creating custom R code. What You Will Learn Discover R's role in the SQL Server 2016 hierarchy. Manage the components needed to run SQL Server R Services code. Run R-language analytics and queries inside the database. Create analytic solutions that run across multiple datasets. Gain in-depth knowledge of the R language itself. Implement custom SQL Server R Services solutions. Who This Book Is For Any level of database administrator or developer, but specifically it's for those developers with the need to develop powerful data analytics applications quickly. Seasoned R developers will appreciate the book for its robust learning pattern, using visual aids in combination with properties explanations and scenarios. Beginning SQL Server R Services is the perfect "new hire" gift for new database developers in any organization.
This book discusses the problem of model choice when the statistical models are separate, also called nonnested. Chapter 1 provides an introduction, motivating examples and a general overview of the problem. Chapter 2 presents the classical or frequentist approach to the problem as well as several alternative procedures and their properties. Chapter 3 explores the Bayesian approach, the limitations of the classical Bayes factors and the proposed alternative Bayes factors to overcome these limitations. It also discusses a significance Bayesian procedure. Lastly, Chapter 4 examines the pure likelihood approach. Various real-data examples and computer simulations are provided throughout the text.
The objective of Kai Zhang and his research is to assess the existing process monitoring and fault detection (PM-FD) methods. His aim is to provide suggestions and guidance for choosing appropriate PM-FD methods, because the performance assessment study for PM-FD methods has become an area of interest in both academics and industry. The author first compares basic FD statistics, and then assesses different PM-FD methods to monitor the key performance indicators of static processes, steady-state dynamic processes and general dynamic processes including transient states. He validates the theoretical developments using both benchmark and real industrial processes.
This volume contains pioneering contributions to both the theory and practice of optimal experimental design. Topics include the optimality of designs in linear and nonlinear models, as well as designs for correlated observations and for sequential experimentation. There is an emphasis on applications to medicine, in particular, to the design of clinical trials. Scientists from Europe, the US, Asia, Australia and Africa contributed to this volume of papers from the 11th Workshop on Model Oriented Design and Analysis.
Up-to-Date Guidance from One of the Foremost Members of the R Core Team Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R. The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R's data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages. A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R. A 2017 Choice Outstanding Academic Title
This volume provides essential guidance for transforming mathematics learning in schools through the use of innovative technology, pedagogy, and curriculum. It presents clear, rigorous evidence of the impact technology can have in improving students learning of important yet complex mathematical concepts -- and goes beyond a focus on technology alone to clearly explain how teacher professional development, pedagogy, curriculum, and student participation and identity each play an essential role in transforming mathematics classrooms with technology. Further, evidence of effectiveness is complemented by insightful case studies of how key factors lead to enhancing learning, including the contributions of design research, classroom discourse, and meaningful assessment. The volume organizes over 15 years of sustained research by multiple investigators in different states and countries who together developed an approach called "SimCalc" that radically transforms how Algebra and Calculus are taught. The SimCalc program engages students around simulated motions, such as races on a soccer field, and builds understanding using visual representations such as graphs, and familiar representations such as stories to help students to develop meaning for more abstract mathematical symbols. Further, the SimCalc program leverages classroom wireless networks to increase participation by all students in doing, talking about, and reflecting on mathematics. Unlike many technology programs, SimCalc research shows the benefits of balanced attention to curriculum, pedagogy, teacher professional development, assessment and technology -- and has proven effectiveness results at the scale of hundreds of schools and classrooms. Combining the findings of multiple investigators in one accessible volume reveals the depth and breadth of the research program, and engages readers interested in: * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning * Engaging students in deeply learning the important concepts in mathematics * Designing innovative curriculum, software, and professional development * Effective uses of technology to improve mathematics education * Creating integrated systems of teaching that transform mathematics classrooms * Scaling up new pedagogies to hundreds of schools and classrooms * Conducting research that really matters for the future of mathematics learning
Numerical Methods with MATLAB provides a highly-practical reference work to assist anyone working with numerical methods. A wide range of techniques are introduced, their merits discussed and fully working MATLAB code samples supplied to demonstrate how they can be coded and applied. Numerical methods have wide applicability across many scientific, mathematical, and engineering disciplines and are most often employed in situations where working out an exact answer to the problem by another method is impractical. Numerical Methods with MATLAB presents each topic in a concise and readable format to help you learn fast and effectively. It is not intended to be a reference work to the conceptual theory that underpins the numerical methods themselves. A wide range of reference works are readily available to supply this information. If, however, you want assistance in applying numerical methods then this is the book for you.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
Through analysis of the European Union Emissions Trading Scheme (EU ETS) and the Clean Development Mechanism (CDM), this book demonstrates how to use a variety of econometric techniques to analyze the evolving and expanding carbon markets sphere, techniques that can be extrapolated to the worldwide marketplace. It features stylized facts about carbon markets from an economics perspective, as well as covering key aspects of pricing strategies, risk and portfolio management.
This book teaches how to use Mathematica to solve a wide variety of problems in mathematics and physics. It is based on the lecture notes of a course taught at the University of Illinois at Chicago to advanced undergrad and graduate students. The book is illustrated with many detailed examples that require the student to construct meticulous, step-by-step, easy to read Mathematica programs. The first part, in which the reader learns how to use a variety of Mathematica commands, contains examples, not long explanations; the second part contains attractive applications.
Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica provides a general framework useful for the applications on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use of ODEs and Mathematica in the dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ODEs such as phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features: * Explanation of how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving * End-of-chapter exercise sets incorporating the use of Mathematica programs * Detailed description of the mathematical procedures underlying the twenty-eight programs written in Mathematica * Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in engineering and applied mathematics interested in problems of ODEs in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-study resource for professionals and others seeking an understanding of how to use ODEs in modeling physical, biological, and economic phenomena.
Intended for anyone needing to apply statistical analysis to a large variety of science and engineering problems, this book shows how to use SPSS, MATLAB, STATISTICA and R for data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. The 2nd edition includes the R language, a new section on bootstrap estimation methods and an improved treatment of tree classifiers, plus additional examples and exercises.
A state-of-the-art research monograph providing consistent treatment of supervisory control, by one of the world's leading groups in the area of Bayesian identification, control, and decision making.
This book provides insight and enhanced appreciation of analysis, modeling and control of dynamic systems. The reader is assumed to be familiar with calculus, physics and some programming skills. It might develop the reader's ability to interpret physical significance of mathematical results in system analysis. The book also prepares the reader for more advanced treatment of subsequent knowledge in the automatic control field. Learning objectives are performance-oriented, using for this purpose interactive MATLAB and SIMULINK software tools. It presents realistic problems in order to analyze, design and develop automatic control systems. Learning with computing tools can aid theory and help students to think, analyze and reason in meaningful ways. The book is also complemented with classroom slides and MATLAB and SIMULINK exercise files to aid students to focus on fundamental concepts treated.
This book provides anintroduction to multistate event history analysis. It is an extension of survival analysis, in which a single terminal event (endpoint) is considered and the time-to-event is studied. Multistate models focus on life histories or trajectories, conceptualized as sequences of states and sequences of transitions between states. Life histories are modeled as realizations of continuous-time Markov processes. The model parameters, transition rates, are estimated from data on event counts and populations at risk, using the statistical theory of counting processes. The Comprehensive R Network Archive (CRAN) includes several packages for multistate modeling. This book is about "Biograph." The package is designed to (a) enhance exploratory analysis of life histories and (b) make multistate modeling accessible. The package incorporates utilities that connect to several packages for multistate modeling, including "survival," "eha," "Epi," "mvna," " etm," "mstate," "msm," and "TraMineR" for sequence analysis. The book is a hands-on presentation of "Biograph" and the packages listed. It is written from the perspective of the user. To help the user master the techniques and the software, a single data set is used to illustrate the methods and software. It is the subsample of the German Life History Survey, which was also used by Blossfeld and Rohwer in their popular textbook on event history modeling. Another data set, the Netherlands Family and Fertility Survey, is used to illustrate how "Biograph" can assist in answering questions on life paths of cohorts and individuals. The book is suitable as a textbook for graduate courses on event history analysis and introductory courses on competing risks and multistate models. It may also be used as a self-study book. The R code used in the book is available online. Frans Willekens is affiliated with the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany. He is Emeritus Professor of Demography at the University of Groningen, a Honorary Fellow of the Netherlands Interdisciplinary Demographic Institute (NIDI) in the Hague, and a Research Associate of the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. He is a member of Royal Netherlands Academy of Arts and Sciences (KNAW). He has contributed to the modeling and simulation of life histories, mainly in the context of population forecasting."
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become familiar with the MATLAB environment, and then you will begin to harness the power of MATLAB. You will learn the MATLAB language, starting with an introduction to variables, and how to manipulate numbers, vectors, matrices, arrays and character strings. You will learn about MATLAB's high-precision capabilities, and how you can use MATLAB to solve problems, making use of arithmetic, relational and logical operators in combination with the common functions and operations of real and complex analysis and linear algebra. You will learn to implement various numerical methods for optimization, interpolation and solving non-linear equations. You will discover how MATLAB can solve problems in differential and integral calculus, both numerically and symbolically, including techniques for solving ordinary and partial differential equations, and how to graph the solutions in brilliant high resolution. You will then expand your knowledge of the MATLAB language by learning how to use commands which enable you to investigate the convergence of sequences and series, and explore continuity and other analytical features of functions in one and several variables.
MATLAB Mathematical Analysis is a reference book that presents the techniques of mathematical analysis through examples and exercises resolved with MATLAB software. The purpose is to give you examples of the mathematical analysis functions offered by MATLAB so that you can use them in your daily work regardless of the application. The book supposes proper training in the mathematics and so presents the basic knowledge required to be able to use MATLAB for calculational or symbolic solutions to your problems for a vast amount of MATLAB functions. The book begins by introducing the reader to the use of numbers, operators, variables and functions in the MATLAB environment. Then it delves into working with complex variables. A large section is devoted to working with and developing graphical representations of curves, surfaces and volumes. MATLAB functions allow working with two-dimensional and three-dimensional graphics, statistical graphs, curves and surfaces in explicit, implicit, parametric and polar coordinates. Additional work implements twisted curves, surfaces, meshes, contours, volumes and graphical interpolation. The following part covers limits, functions, continuity and numerical and power series. Then differentiation is addressed in one and several variables including differential theorems for vector fields. Thereafter the topic of integration is handled including improper integrals, definite and indefinite integration, integration in multiple variables and multiple integrals and their applications. Differential equations are exemplified in detail, Laplace transforms, Tayor series, and the Runga-Kutta method and partial differential equations.
This volume presents theoretical developments, applications and
computational methods for the analysis and modeling in behavioral
and social sciences where data are usually complex to explore and
investigate. The challenging proposals provide a connection between
statistical methodology and the social domain with particular
attention to computational issues in order to effectively address
complicated data analysis problems.
This is the first book to show the capabilities of Microsoft Excel to teach engineering statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand engineering problems. Practice problems are provided at the end of each chapter with their solutions in an Appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned. |
You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,501
Discovery Miles 15 010
JMP Essentials - An Illustrated Guide…
Curt Hinrichs, Chuck Boiler, …
Hardcover
R2,063
Discovery Miles 20 630
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
The Little SAS Enterprise Guide Book
Susan J Slaughter, Lora D Delwiche
Hardcover
R1,790
Discovery Miles 17 900
|