Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Differential Equations introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to the MATLAB environment and MATLAB programming, this book provides all the material needed to work on differential equations using MATLAB. It includes techniques for solving ordinary and partial differential equations of various kinds, and systems of such equations, either symbolically or using numerical methods (Euler's method, Heun's method, the Taylor series method, the Runge-Kutta method,...). It also describes how to implement mathematical tools such as the Laplace transform, orthogonal polynomials, and special functions (Airy and Bessel functions), and find solutions of finite difference equations.
Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others.
This volume presents theoretical developments, applications and
computational methods for the analysis and modeling in behavioral
and social sciences where data are usually complex to explore and
investigate. The challenging proposals provide a connection between
statistical methodology and the social domain with particular
attention to computational issues in order to effectively address
complicated data analysis problems.
Recent advances in the understanding of star formation and evolution have been impressive and aspects of that knowledge are explored in this volume. The black hole stellar endpoints are studied and geodesic motion is explored. The emission of gravitational waves is featured due to their very recent experimental discovery.The second aspect of the text is space exploration which began 62 years ago with the Sputnik Earth satellite followed by the landing on the Moon just 50 years ago. Since then Mars has been explored remotely as well as flybys of the outer planets and probes which have escaped the solar system. The text explores many aspects of rocket travel. Finally possibilities for interstellar travel are discussed.All these topics are treated in a unified way using the Matlab App to combine text, figures, formulae and numeric input and output. In this way the reader may vary parameters and see the results in real time. That experience aids in building up an intuitive feel for the many specific problems given in this text.
Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple (TM). The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovsek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.
Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence ofmeasurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published. "
This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
The theme of the meeting was Statistical Methods for the
Analysis of Large Data-Sets . In recent years there has been
increasing interest in this subject; in fact a huge quantity of
information is often available but standard statistical techniques
are usually not well suited to managing this kind of data. The
conference serves as an important meeting point for European
researchers working on this topic and a number of European
statistical societies participated in the organization of the
event.
The interaction of the solar and heat radiation with the atmosphere and surface is the subject of the book. It is useful also for wide circle scientists involved in environmental studies. The book contains the description of 17 computer studying programs supporting different topics of courses. It includes only the base ground for comprehension of key topics and provides the accomplishment of practical works with using specially elaborated computer programs. Themes of practical works reflect main sections of mentioned courses of lectures. The packet of computer programs is added for solution of direct and inverse problems. It promotes deep and reliable comprehension of corresponding topics by students. All described approaches and computer programs are valuable resources for solving radiative transfer problems and they could be used by students for courses and diploma studies concerned atmospheric optics.
"Functional and Phylogenetic Ecology in R" is designed to teach readers to use R for phylogenetic and functional trait analyses. Over the past decade, a dizzying array of tools and methods were generated to incorporate phylogenetic and functional information into traditional ecological analyses. Increasingly these tools are implemented in R, thus greatly expanding their impact. Researchers getting started in R can use this volume as a step-by-step entryway into phylogenetic and functional analyses for ecology in R. More advanced users will be able to use this volume as a quick reference to understand particular analyses. The volume begins with an introduction to the R environment and handling relevant data in R. Chapters then cover phylogenetic and functional metrics of biodiversity; null modeling and randomizations for phylogenetic and functional trait analyses; integrating phylogenetic and functional trait information; and interfacing the R environment with a popular C-based program. This book presents a unique approach through its focus on ecological analyses and not macroevolutionary analyses. The author provides his own code, so that the reader is guided through the computational steps to calculate the desired metrics. This guided approach simplifies the work of determining which package to use for any given analysis. Example datasets are shared to help readers practice, and readers can then quickly turn to their own datasets.
Post-Optimal Analysis in Linear Semi-Infinite Optimization examines the following topics in regards to linear semi-infinite optimization: modeling uncertainty, qualitative stability analysis, quantitative stability analysis and sensitivity analysis. Linear semi-infinite optimization (LSIO) deals with linear optimization problems where the dimension of the decision space or the number of constraints is infinite. The authors compare the post-optimal analysis with alternative approaches to uncertain LSIO problems and provide readers with criteria to choose the best way to model a given uncertain LSIO problem depending on the nature and quality of the data along with the available software. This work also contains open problems which readers will find intriguing a challenging. Post-Optimal Analysis in Linear Semi-Infinite Optimization is aimed toward researchers, graduate and post-graduate students of mathematics interested in optimization, parametric optimization and related topics.
This innovative approach to teaching the finite element method blends theoretical, textbook-based learning with practical application using online and video resources. This hybrid teaching package features computational software such as MATLAB (R), and tutorials presenting software applications such as PTC Creo Parametric, ANSYS APDL, ANSYS Workbench and SolidWorks, complete with detailed annotations and instructions so students can confidently develop hands-on experience. Suitable for senior undergraduate and graduate level classes, students will transition seamlessly between mathematical models and practical commercial software problems, empowering them to advance from basic differential equations to industry-standard modelling and analysis. Complete with over 120 end-of chapter problems and over 200 illustrations, this accessible reference will equip students with the tools they need to succeed in the workplace.
This book presents methods for computing correlation equations. All the topics treated hefe are eluci dated in terms of concrete examples, which have been chosen, for the most part, from the Held of analysis of the mechanical properties of steel, wood, and other materials. A necessary prerequisite for any study of correlation equations is so me knowledge of the moments of random variables. In the Appendix, there is provided a brief treatment of moments, as well as a discussion of the simplest methods of computing them. We have paid particular attention in this book to the techniques of computing correlation equations, and to the use of tables for alleviating the computationalload. The mathematical bases of the methods used in setting up correlation equations are expounded in the books cited at the end of this volume. A. M. December 1965 PIe ase note that the abbreviation 19 is used in this book to designate the logarithm to base ten, Note further that the comma has been retained as the decimal point in tabular material."
Separation of signal from noise is the most fundamental problem in data analysis, arising in such fields as: signal processing, econometrics, actuarial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, with extensions to local likelihood and density estimation. Practical information is also included on how to implement these methods in the programs S-PLUS and LOCFIT.
Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: * Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. * Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. * Explores portfolio risk concepts and optimization with risk constraints. * Is accompanied by a supporting website featuring examples and case studies in R. * Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
Engineering mechanics involves the development of mathematical models of the physical world. Statics addresses the forces acting on and in mechanical objects and systems. Statics with MATLAB (R) develops an understanding of the mechanical behavior of complex engineering structures and components using MATLAB (R) to execute numerical calculations and to facilitate analytical calculations. MATLAB (R) is presented and introduced as a highly convenient tool to solve problems for theory and applications in statics. Included are example problems to demonstrate the MATLAB (R) syntax and to also introduce specific functions dealing with statics. These explanations are reinforced through figures generated with MATLAB (R) and the extra material available online which includes the special functions described. This detailed introduction and application of MATLAB (R) to the field of statics makes Statics with MATLAB (R) a useful tool for instruction as well as self study, highlighting the use of symbolic MATLAB (R) for both theory and applications to find analytical and numerical solutions
This book helps the reader make use of the mathematical models of biological phenomena starting from the basics of programming and computer simulation. Computer simulations based on a mathematical model enable us to find a novel biological mechanism and predict an unknown biological phenomenon. Mathematical biology could further expand the progress of modern life sciences. Although many biologists are interested in mathematical biology, they do not have experience in mathematics and computer science. An educational course that combines biology, mathematics, and computer science is very rare to date. Published books for mathematical biology usually explain the theories of established mathematical models, but they do not provide a practical explanation for how to solve the differential equations included in the models, or to establish such a model that fits with a phenomenon of interest. MATLAB is an ideal programming platform for the beginners of computer science. This book starts from the very basics about how to write a programming code for MATLAB (or Octave), explains how to solve ordinary and partial differential equations, and how to apply mathematical models to various biological phenomena such as diabetes, infectious diseases, and heartbeats. Some of them are original models, newly developed for this book. Because MATLAB codes are embedded and explained throughout the book, it will be easy to catch up with the text. In the final chapter, the book focuses on the mathematical model of the proneural wave, a phenomenon that guarantees the sequential differentiation of neurons in the brain. This model was published as a paper from the author's lab (Sato et al., PNAS 113, E5153, 2016), and was intensively explained in the book chapter "Notch Signaling in Embryology and Cancer", published by Springer in 2020. This book provides the reader who has a biological background with invaluable opportunities to learn and practice mathematical biology.
Rcpp is the glue that binds the power and versatility of R with the speed and efficiency of C++. With Rcpp, the transfer of data between R and C++ is nearly seamless, and high-performance statistical computing is finally accessible to most R users. Rcpp should be part of every statistician's toolbox. -- Michael Braun, MIT Sloan School of Management "Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book -- Soren Hojsgaard," "Department of Mathematical Sciences, Aalborg University, Denmark "Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++. Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst. "
This book collects the proceedings of the 10th Workshop on Model-Oriented Design and Analysis (mODa). A model-oriented view on the design of experiments, which is the unifying theme of all mODa meetings, assumes some knowledge of the form of the data-generating process and naturally leads to the so-called optimum experimental design. Its theory and practice have since become important in many scientific and technological fields, ranging from optimal designs for dynamic models in pharmacological research, to designs for industrial experimentation, to designs for simulation experiments in environmental risk management, to name but a few. The methodology has become even more important in recent years because of the increased speed of scientific developments, the complexity of the systems currently under investigation and the mounting pressure on businesses, industries and scientific researchers to reduce product and process development times. This increased competition requires ever increasing efficiency in experimentation, thus necessitating new statistical designs. This book presents a rich collection of carefully selected contributions ranging from statistical methodology to emerging applications. It primarily aims to provide an overview of recent advances and challenges in the field, especially in the context of new formulations, methods and state-of-the-art algorithms. The topics included in this volume will be of interest to all scientists and engineers and statisticians who conduct experiments.
This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package "compositions," it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software. The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.
Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.
This is an introduction to time series that emphasizes methods and analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills. Statisticians and students will learn the latest methods in time series and forecasting, along with modern computational models and algorithms.
An overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. The authors present a unified model-building strategy for both models and apply this to the analysis of over 20 real datasets from a wide variety of areas, including pharmacokinetics, agriculture, and manufacturing. Much emphasis is placed on the use of graphical displays at the various phases of the model-building process, starting with exploratory plots of the data and concluding with diagnostic plots to assess the adequacy of a fitted model. The NLME library for analyzing mixed-effects models in S and S-PLUS, developed by the authors, provides the underlying software for implementing the methods presented. This balanced mix of real data examples, modeling software, and theory makes the book a useful reference for practitioners who use, or intend to use, mixed-effects models in their data analyses. It can also be used as a text for a one-semester graduate-level applied course.
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text. |
You may like...
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland
Hardcover
R2,922
Discovery Miles 29 220
Portfolio and Investment Analysis with…
John B. Guerard, Ziwei Wang, …
Hardcover
R2,369
Discovery Miles 23 690
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,404
Discovery Miles 124 040
Higher Education 4.0 - The Digital…
Kevin Anthony Jones, Sharma Ravishankar
Hardcover
R4,378
Discovery Miles 43 780
SAS for Mixed Models - Introduction and…
Walter W. Stroup, George A. Milliken, …
Hardcover
R3,147
Discovery Miles 31 470
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,613
Discovery Miles 16 130
|