0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (29)
  • R500+ (1,400)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Probability and Statistics with R (Hardcover, 2nd edition): Maria Dolores Ugarte, Ana F. Militino, Alan T. Arnholt Probability and Statistics with R (Hardcover, 2nd edition)
Maria Dolores Ugarte, Ana F. Militino, Alan T. Arnholt
R3,191 Discovery Miles 31 910 Ships in 10 - 15 working days

Cohesively Incorporates Statistical Theory with R Implementation Since the publication of the popular first edition of this comprehensive textbook, the contributed R packages on CRAN have increased from around 1,000 to over 6,000. Designed for an intermediate undergraduate course, Probability and Statistics with R, Second Edition explores how some of these new packages make analysis easier and more intuitive as well as create more visually pleasing graphs. New to the Second Edition Improvements to existing examples, problems, concepts, data, and functions New examples and exercises that use the most modern functions Coverage probability of a confidence interval and model validation Highlighted R code for calculations and graph creation Gets Students Up to Date on Practical Statistical Topics Keeping pace with today's statistical landscape, this textbook expands your students' knowledge of the practice of statistics. It effectively links statistical concepts with R procedures, empowering students to solve a vast array of real statistical problems with R. Web Resources A supplementary website offers solutions to odd exercises and templates for homework assignments while the data sets and R functions are available on CRAN.

Pyomo - Optimization Modeling in Python (Paperback, 3rd ed. 2021): Michael L. Bynum, Gabriel A. Hackebeil, William E Hart, Carl... Pyomo - Optimization Modeling in Python (Paperback, 3rd ed. 2021)
Michael L. Bynum, Gabriel A. Hackebeil, William E Hart, Carl D. Laird, Bethany L. Nicholson, …
R1,394 Discovery Miles 13 940 Ships in 18 - 22 working days

This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. In the third edition, much of the material has been reorganized, new examples have been added, and a new chapter has been added describing how modelers can improve the performance of their models. The authors have also modified their recommended method for importing Pyomo. A big change in this edition is the emphasis of concrete models, which provide fewer restrictions on the specification and use of Pyomo models. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.

Festschrift in Honor of R. Dennis Cook - Fifty Years of Contribution to Statistical Science (Paperback, 1st ed. 2021):... Festschrift in Honor of R. Dennis Cook - Fifty Years of Contribution to Statistical Science (Paperback, 1st ed. 2021)
Efstathia Bura, Bing Li
R3,762 Discovery Miles 37 620 Ships in 18 - 22 working days

In honor of professor and renowned statistician R. Dennis Cook, this festschrift explores his influential contributions to an array of statistical disciplines ranging from experimental design and population genetics, to statistical diagnostics and all areas of regression-related inference and analysis. Since the early 1990s, Prof. Cook has led the development of dimension reduction methodology in three distinct but related regression contexts: envelopes, sufficient dimension reduction (SDR), and regression graphics. In particular, he has made fundamental and pioneering contributions to SDR, inventing or co-inventing many popular dimension reduction methods, such as sliced average variance estimation, the minimum discrepancy approach, model-free variable selection, and sufficient dimension reduction subspaces. A prolific researcher and mentor, Prof. Cook is known for his ability to identify research problems in statistics that are both challenging and important, as well as his deep appreciation for the applied side of statistics. This collection of Prof. Cook's collaborators, colleagues, friends, and former students reflects the broad array of his contributions to the research and instructional arenas of statistics.

A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Paperback, 1st ed. 2021): Domingo... A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Paperback, 1st ed. 2021)
Domingo Morales, Maria Dolores Esteban, Agustin Perez, Tomas Hobza
R2,740 Discovery Miles 27 400 Ships in 18 - 22 working days

This advanced textbook explores small area estimation techniques, covers the underlying mathematical and statistical theory and offers hands-on support with their implementation. It presents the theory in a rigorous way and compares and contrasts various statistical methodologies, helping readers understand how to develop new methodologies for small area estimation. It also includes numerous sample applications of small area estimation techniques. The underlying R code is provided in the text and applied to four datasets that mimic data from labor markets and living conditions surveys, where the socioeconomic indicators include the small area estimation of total unemployment, unemployment rates, average annual household incomes and poverty indicators. Given its scope, the book will be useful for master and PhD students, and for official and other applied statisticians.

Modeling Biomaterials (Paperback, 1st ed. 2021): Josef Malek, Endre Suli Modeling Biomaterials (Paperback, 1st ed. 2021)
Josef Malek, Endre Suli
R2,085 Discovery Miles 20 850 Ships in 18 - 22 working days

The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.

Multivariate Statistical Machine Learning Methods for Genomic Prediction (Paperback, 1st ed. 2022): Osval Antonio Montesinos... Multivariate Statistical Machine Learning Methods for Genomic Prediction (Paperback, 1st ed. 2022)
Osval Antonio Montesinos Lopez, Abelardo Montesinos Lopez, Jose Crossa
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Time-dependent Problems in Imaging and Parameter Identification (Paperback, 1st ed. 2021): Barbara Kaltenbacher, Thomas... Time-dependent Problems in Imaging and Parameter Identification (Paperback, 1st ed. 2021)
Barbara Kaltenbacher, Thomas Schuster, Anne Wald
R4,059 Discovery Miles 40 590 Ships in 18 - 22 working days

Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.

Elements of Statistical Computing - NUMERICAL COMPUTATION (Hardcover): R.A. Thisted Elements of Statistical Computing - NUMERICAL COMPUTATION (Hardcover)
R.A. Thisted
R5,233 Discovery Miles 52 330 Ships in 10 - 15 working days

Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing.
The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.

Core Data Analysis: Summarization, Correlation, and Visualization (Paperback, 2nd ed. 2019): Boris Mirkin Core Data Analysis: Summarization, Correlation, and Visualization (Paperback, 2nd ed. 2019)
Boris Mirkin
R1,472 Discovery Miles 14 720 Ships in 9 - 17 working days

This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank. Features: * An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter. * Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc. * Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and consensus clustering, modularity clustering and uniform partitioning. New edition highlights: * Inclusion of ranking issues such as Google PageRank, linear stratification and tied rankings median, consensus clustering, semi-average clustering, one-cluster clustering * Restructured to make the logics more straightforward and sections self-contained Core Data Analysis: Summarization, Correlation and Visualization is aimed at those who are eager to participate in developing the field as well as appealing to novices and practitioners.

Computational Actuarial Science with R (Hardcover): Arthur Charpentier Computational Actuarial Science with R (Hardcover)
Arthur Charpentier
R4,271 Discovery Miles 42 710 Ships in 10 - 15 working days

A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).

DUNE - The Distributed and Unified Numerics Environment (Paperback, 1st ed. 2020): Oliver Sander DUNE - The Distributed and Unified Numerics Environment (Paperback, 1st ed. 2020)
Oliver Sander
R1,878 Discovery Miles 18 780 Ships in 18 - 22 working days

The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their own advanced finite element simulators, tapping the power of Dune to do so.

Engineering and Scientific Computations Using MATLAB (Hardcover): S.E. Lyshevski Engineering and Scientific Computations Using MATLAB (Hardcover)
S.E. Lyshevski
R2,887 Discovery Miles 28 870 Ships in 10 - 15 working days

Master MATLAB step-by-step

The MATLAB– "MATrix LABoratory"–computational environment offers a rich set of capabilities to efficiently solve a variety of complex analysis, simulation, and optimization problems. Flexible, powerful, and relatively easy to use, the MATLAB environment has become a standard cost-effective tool within the engineering, science, and technology communities. Excellent as a self-teaching guide for professionals as well as a textbook for students, Engineering and Scientific Computations Using MATLAB helps you fully understand the MATLAB environment, build your skills, and apply its features to a wide range of applications.

Going beyond traditional MATLAB user manuals and college texts, Engineering and Scientific Computations Using MATLAB guides you through the most important aspects and basics of MATLAB programming and problem-solving from fundamentals to practice. Augmenting its discussion with a wealth of practical worked-out examples and qualitative illustrations, this book demonstrates MATLAB’s capabilities and offers step-by-step instructions on how to apply the theory to a practical real-world problem. In particular, the book features:

  • Coverage of a variety of complex physical and engineering systems described by nonlinear differential equations
  • Detailed application of MATLAB to electromechanical systems
  • MATLAB files, scripts, and statements, as well as SIMULINK models which can be easily modified for application-specific problems encountered in practice

Readable, user-friendly, and comprehensive in scope this is a welcome introduction to MATLAB for those new to the program and an ideal companion for engineers seeking in-depth mastery of the high-performance MATLAB environment.

Continuous-Time Markov Decision Processes - Borel Space Models and General Control Strategies (Paperback, 1st ed. 2020): Alexey... Continuous-Time Markov Decision Processes - Borel Space Models and General Control Strategies (Paperback, 1st ed. 2020)
Alexey Piunovskiy, Yi Zhang; Foreword by Albert Nikolaevich Shiryaev
R4,096 Discovery Miles 40 960 Ships in 18 - 22 working days

This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.

Nonparametric Statistics - 4th ISNPS, Salerno, Italy, June 2018 (Paperback, 1st ed. 2020): Michele La Rocca, Brunero Liseo,... Nonparametric Statistics - 4th ISNPS, Salerno, Italy, June 2018 (Paperback, 1st ed. 2020)
Michele La Rocca, Brunero Liseo, Luigi Salmaso
R5,215 Discovery Miles 52 150 Ships in 18 - 22 working days

Highlighting the latest advances in nonparametric and semiparametric statistics, this book gathers selected peer-reviewed contributions presented at the 4th Conference of the International Society for Nonparametric Statistics (ISNPS), held in Salerno, Italy, on June 11-15, 2018. It covers theory, methodology, applications and computational aspects, addressing topics such as nonparametric curve estimation, regression smoothing, models for time series and more generally dependent data, varying coefficient models, symmetry testing, robust estimation, and rank-based methods for factorial design. It also discusses nonparametric and permutation solutions for several different types of data, including ordinal data, spatial data, survival data and the joint modeling of both longitudinal and time-to-event data, permutation and resampling techniques, and practical applications of nonparametric statistics. The International Society for Nonparametric Statistics is a unique global organization, and its international conferences are intended to foster the exchange of ideas and the latest advances and trends among researchers from around the world and to develop and disseminate nonparametric statistics knowledge. The ISNPS 2018 conference in Salerno was organized with the support of the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and the University of Salerno.

Python for Marketing Research and Analytics (Paperback, 1st ed. 2020): Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit Python for Marketing Research and Analytics (Paperback, 1st ed. 2020)
Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit
R1,679 Discovery Miles 16 790 Ships in 18 - 22 working days

This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.

Statistical Computing - An Introduction to Data Analysis Using S-Plus (Hardcover): M.J. Crawley Statistical Computing - An Introduction to Data Analysis Using S-Plus (Hardcover)
M.J. Crawley
R3,262 Discovery Miles 32 620 Ships in 10 - 15 working days

S-Plus is a first-rate graphical environment, used by thousands worldwide to perform basic, intermediate and advanced statistical analysis. It is remarkably powerful, yet relatively simple to use, once you have the basics at your fingertips. Statistical Computing: An Introduction to Data Analysis using S-Plus provides a pragmatic introduction to analysing data using S-Plus, whilst covering a huge breadth of topics, and assuming minimal statistical knowledge.

  • Provides an accessible yet comprehensive introduction to statistical computing, and can be used as a reference volume for S-Plus.

  • Covers a breadth of topics, including the basics, such as sampling and measures of central tendency and variation; the intermediate, such as analysis of variance and regression; and the most advanced modern methods, such as nonlinear mixed effects modelling and tree models.

  • Develops each concept from first principles in small steps, with worked examples and implementation advice throughout.

  • Assumes minimal experience of statistics and computing.

  • Emphasises graphical data inspection, parameter estimation and model criticism.

  • Supported by a Web site featuring all the data-frames, along with problems and worked examples.
This is very much an introductory statistics book for all scientists. It is based on the premise that effective data analysis requires the mastery of a core of central ideas and methods, and that these cut across the boundaries of academic disciplines. It is suitable for advanced undergraduate, graduate students, researchers, and industry professionals from science, medicine, engineering, economics, the social sciences, and many other disciplines that have a need for statistical data analysis.
Modelling Non-Markovian Quantum Systems Using Tensor Networks (Paperback, 1st ed. 2020): Aidan Strathearn Modelling Non-Markovian Quantum Systems Using Tensor Networks (Paperback, 1st ed. 2020)
Aidan Strathearn
R3,286 Discovery Miles 32 860 Ships in 18 - 22 working days

This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.

The Theory of Queuing Systems with Correlated Flows (Paperback, 1st ed. 2020): Alexander N. Dudin, Valentina I. Klimenok,... The Theory of Queuing Systems with Correlated Flows (Paperback, 1st ed. 2020)
Alexander N. Dudin, Valentina I. Klimenok, Vladimir M. Vishnevsky
R2,690 Discovery Miles 26 900 Ships in 18 - 22 working days

This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.

Benefit/Cost-Driven Software Development - With Benefit Points and Size Points (Paperback, 1st ed. 2021): Jo Erskine Hannay Benefit/Cost-Driven Software Development - With Benefit Points and Size Points (Paperback, 1st ed. 2021)
Jo Erskine Hannay
R1,023 Discovery Miles 10 230 Ships in 18 - 22 working days

This open access book presents a set of basic techniques for estimating the benefit of IT development projects and portfolios. It also offers methods for monitoring how much of that estimated benefit is being achieved during projects. Readers can then use these benefit estimates together with cost estimates to create a benefit/cost index to help them decide which functionalities to send into construction and in what order. This allows them to focus on constructing the functionality that offers the best value for money at an early stage. Although benefits management involves a wide range of activities in addition to estimation and monitoring, the techniques in this book provides a clear guide to achieving what has always been the goal of project and portfolio stakeholders: developing systems that produce as much usefulness and value as possible for the money invested. The techniques can also help deal with vicarious motives and obstacles that prevent this happening. The book equips readers to recognize when a project budget should not be spent in full and resources be allocated elsewhere in a portfolio instead. It also provides development managers and upper management with common ground as a basis for making informed decisions.

An Introduction to Sequential Monte Carlo (Paperback, 1st ed. 2020): Nicolas Chopin, Omiros Papaspiliopoulos An Introduction to Sequential Monte Carlo (Paperback, 1st ed. 2020)
Nicolas Chopin, Omiros Papaspiliopoulos
R2,003 Discovery Miles 20 030 Ships in 18 - 22 working days

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a "Python corner," which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Nonlinear Parameter Optimization using R tools (Hardcover): J.C. Nash Nonlinear Parameter Optimization using R tools (Hardcover)
J.C. Nash
R1,663 Discovery Miles 16 630 Ships in 10 - 15 working days

Nonlinear Parameter Optimization Using RJohn C. Nash, Telfer School of Management, University of Ottawa, Canada

A systematic and comprehensive treatment of optimization software using RIn recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non-linear, multivariable conditions, more quickly than ever before.Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout.

Nonlinear Parameter Optimization with R: - Provides a comprehensive treatment of optimization techniques- Examines optimization problems that arise in statistics and how to solve them using R- Enables researchers and practitioners to solve parameter determination problems- Presents traditional methods as well as recent developments in R- Is supported by an accompanying website featuring R code, examples and datasets

Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.

Analytical Methods in Statistics - AMISTAT, Liberec, Czech Republic, September 2019 (Paperback, 1st ed. 2020): Matus Maciak,... Analytical Methods in Statistics - AMISTAT, Liberec, Czech Republic, September 2019 (Paperback, 1st ed. 2020)
Matus Maciak, Michal Pesta, Martin Schindler
R2,619 Discovery Miles 26 190 Ships in 18 - 22 working days

This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.

Fundamentals of Data Analytics - With a View to Machine Learning (Paperback, 1st ed. 2020): Rudolf Mathar, Gholamreza... Fundamentals of Data Analytics - With a View to Machine Learning (Paperback, 1st ed. 2020)
Rudolf Mathar, Gholamreza Alirezaei, Emilio Balda, Arash Behboodi
R1,706 Discovery Miles 17 060 Ships in 18 - 22 working days

This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.

Modern Optimization with R (Paperback, 2nd ed. 2021): Paulo Cortez Modern Optimization with R (Paperback, 2nd ed. 2021)
Paulo Cortez
R2,420 Discovery Miles 24 200 Ships in 18 - 22 working days

The goal of this book is to gather in a single work the most relevant concepts related in optimization methods, showing how such theories and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in computer science, information technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R. This new edition integrates the latest R packages through text and code examples. It also discusses new topics, such as: the impact of artificial intelligence and business analytics in modern optimization tasks; the creation of interactive Web applications; usage of parallel computing; and more modern optimization algorithms (e.g., iterated racing, ant colony optimization, grammatical evolution).

Functional and High-Dimensional Statistics and Related Fields (Paperback, 1st ed. 2020): German Aneiros, Ivana Horova, Marie... Functional and High-Dimensional Statistics and Related Fields (Paperback, 1st ed. 2020)
German Aneiros, Ivana Horova, Marie Huskova, Philippe Vieu
R4,011 Discovery Miles 40 110 Ships in 18 - 22 working days

This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Emerging Trends in Learning Analytics…
Myint Swe Khine Hardcover R3,249 Discovery Miles 32 490
Recent Advances in Rock Magnetism…
Danis Nurgaliev, Valery Shcherbakov, … Hardcover R4,106 Discovery Miles 41 060
Wireless Communication Networks…
Hailong Huang, Andrey V. Savkin, … Paperback R2,763 Discovery Miles 27 630
Computational Fluid Dynamics for Sport…
Martin Peters Hardcover R1,402 Discovery Miles 14 020
Acoustics of Layered Media II - Point…
Leonid M. Brekhovskikh, Oleg A. Godin Hardcover R5,438 Discovery Miles 54 380
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, … Hardcover R2,395 Discovery Miles 23 950
Advances in Signal Processing and…
Banmali S. Rawat, Aditya Trivedi, … Hardcover R5,267 Discovery Miles 52 670
Big Data Analytics for Sustainable…
Anandakumar Haldorai, Arulmurugan Ramu Hardcover R6,696 Discovery Miles 66 960
Handbook of Computer Simulation in Radio…
Sergey A. Leonov Hardcover R4,308 Discovery Miles 43 080
Business Skills for Data Scientists…
David Stephenson Paperback R2,052 R984 Discovery Miles 9 840

 

Partners