0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (14)
  • R250 - R500 (32)
  • R500+ (1,431)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

A Beginner's Guide to Statistics for Criminology and Criminal Justice Using R (Hardcover, 1st ed. 2021): Alese Wooditch,... A Beginner's Guide to Statistics for Criminology and Criminal Justice Using R (Hardcover, 1st ed. 2021)
Alese Wooditch, Nicole J Johnson, Reka Solymosi, Juanjo Medina Ariza, Samuel Langton
R2,178 R2,027 Discovery Miles 20 270 Save R151 (7%) Ships in 9 - 15 working days

This book provides hands-on guidance for researchers and practitioners in criminal justice and criminology to perform statistical analyses and data visualization in the free and open-source software R. It offers a step-by-step guide for beginners to become familiar with the RStudio platform and tidyverse set of packages. This volume will help users master the fundamentals of the R programming language, providing tutorials in each chapter that lay out research questions and hypotheses centering around a real criminal justice dataset, such as data from the National Survey on Drug Use and Health, National Crime Victimization Survey, Youth Risk Behavior Surveillance System, The Monitoring the Future Study, and The National Youth Survey. Users will also learn how to manipulate common sources of agency data, such as calls-for-service (CFS) data. The end of each chapter includes exercises that reinforce the R tutorial examples, designed to help master the software as well as to provide practice on statistical concepts, data analysis, and interpretation of results. The text can be used as a stand-alone guide to learning R or it can be used as a companion guide to an introductory statistics textbook, such as Basic Statistics in Criminal Justice (2020).

Data Science for Public Policy (Paperback, 1st ed. 2021): Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall Data Science for Public Policy (Paperback, 1st ed. 2021)
Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
R1,603 Discovery Miles 16 030 Ships in 10 - 15 working days

This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst's time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.

Time Series Analysis for the State-Space Model with R/Stan (Paperback, 1st ed. 2021): Junichiro Hagiwara Time Series Analysis for the State-Space Model with R/Stan (Paperback, 1st ed. 2021)
Junichiro Hagiwara
R4,112 Discovery Miles 41 120 Ships in 10 - 15 working days

This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.

Luminescence - Data Analysis and Modeling Using R (Paperback, 1st ed. 2021): Vasilis Pagonis Luminescence - Data Analysis and Modeling Using R (Paperback, 1st ed. 2021)
Vasilis Pagonis
R2,157 R1,292 Discovery Miles 12 920 Save R865 (40%) Ships in 9 - 15 working days

This book covers applications of R to the general discipline of radiation dosimetry and to the specific areas of luminescence dosimetry, luminescence dating, and radiation protection dosimetry. It features more than 90 detailed worked examples of R code fully integrated into the text, with extensive annotations. The book shows how researchers can use available R packages to analyze their experimental data, and how to extract the various parameters describing mathematically the luminescence signals. In each chapter, the theory behind the subject is summarized, and references are given from the literature, so that researchers can look up the details of the theory and the relevant experiments. Several chapters are dedicated to Monte Carlo methods, which are used to simulate the luminescence processes during the irradiation, heating, and optical stimulation of solids, for a wide variety of materials. This book will be useful to those who use the tools of luminescence dosimetry, including physicists, geologists, archaeologists, and for all researchers who use radiation in their research.

Pyomo - Optimization Modeling in Python (Paperback, 3rd ed. 2021): Michael L. Bynum, Gabriel A. Hackebeil, William E Hart, Carl... Pyomo - Optimization Modeling in Python (Paperback, 3rd ed. 2021)
Michael L. Bynum, Gabriel A. Hackebeil, William E Hart, Carl D. Laird, Bethany L. Nicholson, …
R1,491 Discovery Miles 14 910 Ships in 10 - 15 working days

This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. In the third edition, much of the material has been reorganized, new examples have been added, and a new chapter has been added describing how modelers can improve the performance of their models. The authors have also modified their recommended method for importing Pyomo. A big change in this edition is the emphasis of concrete models, which provide fewer restrictions on the specification and use of Pyomo models. Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.

Advanced Sampling Methods (Paperback, 1st ed. 2021): Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra Advanced Sampling Methods (Paperback, 1st ed. 2021)
Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra
R1,760 Discovery Miles 17 600 Ships in 10 - 15 working days

This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.

A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Hardcover, 1st ed. 2021): Domingo... A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Hardcover, 1st ed. 2021)
Domingo Morales, Maria Dolores Esteban, Agustin Perez, Tomas Hobza
R3,182 R2,932 Discovery Miles 29 320 Save R250 (8%) Ships in 9 - 15 working days

This advanced textbook explores small area estimation techniques, covers the underlying mathematical and statistical theory and offers hands-on support with their implementation. It presents the theory in a rigorous way and compares and contrasts various statistical methodologies, helping readers understand how to develop new methodologies for small area estimation. It also includes numerous sample applications of small area estimation techniques. The underlying R code is provided in the text and applied to four datasets that mimic data from labor markets and living conditions surveys, where the socioeconomic indicators include the small area estimation of total unemployment, unemployment rates, average annual household incomes and poverty indicators. Given its scope, the book will be useful for master and PhD students, and for official and other applied statisticians.

Principles of Statistical Analysis - Learning from Randomized Experiments (Hardcover): Ery Arias-Castro Principles of Statistical Analysis - Learning from Randomized Experiments (Hardcover)
Ery Arias-Castro
R2,677 R2,316 Discovery Miles 23 160 Save R361 (13%) Ships in 12 - 17 working days

This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.

Principles of Statistical Analysis - Learning from Randomized Experiments (Paperback): Ery Arias-Castro Principles of Statistical Analysis - Learning from Randomized Experiments (Paperback)
Ery Arias-Castro
R938 Discovery Miles 9 380 Ships in 12 - 17 working days

This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.

Audit Analytics - Data Science for the Accounting Profession (Paperback, 1st ed. 2020): J. Christopher Westland Audit Analytics - Data Science for the Accounting Profession (Paperback, 1st ed. 2020)
J. Christopher Westland
R1,899 R1,776 Discovery Miles 17 760 Save R123 (6%) Ships in 9 - 15 working days

Today, information technology plays a pivotal role in financial control and audit: most financial data is now digitally recorded and dispersed among servers, clouds and networks over which the audited firm has no control. Additionally, a firm's data-particularly in the case of finance, software, insurance and biotech firms- comprises most of the audited value of the firm. Financial audits are critical mechanisms for ensuring the integrity of information systems and the reporting of organizational finances. They help avoid the abuses that led to passage of legislation such as the Foreign Corrupt Practices Act (1977), and the Sarbanes-Oxley Act (2002). Audit effectiveness has declined over the past two decades as auditor skillsets have failed to keep up with advances in information technology. Information and communication technology lie at the core of commerce today and are integrated in business processes around the world. This book is designed to meet the increasing need of audit professionals to understand information technology and the controls required to manage it. The material included focuses on the requirements for annual Securities and Exchange Commission audits (10-K) for listed corporations. These represent the benchmark auditing procedures for specialized audits, such as internal, governmental, and attestation audits. Using R and RStudio, the book demonstrates how to render an audit opinion that is legally and statistically defensible; analyze, extract, and manipulate accounting data; build a risk assessment matrix to inform the conduct of a cost-effective audit program; and more.

TI-Nspire For Dummies 2e (Paperback, 2nd Edition): J McCalla TI-Nspire For Dummies 2e (Paperback, 2nd Edition)
J McCalla
R525 R454 Discovery Miles 4 540 Save R71 (14%) Ships in 12 - 17 working days

The updated guide to the newest graphing calculator from Texas Instruments

The TI-Nspire graphing calculator is popular among high school and college students as a valuable tool for calculus, AP calculus, and college-level algebra courses. Its use is allowed on the major college entrance exams. This book is a nuts-and-bolts guide to working with the TI-Nspire, providing everything you need to get up and running and helping you get the most out of this high-powered math tool.Texas Instruments' TI-Nspire graphing calculator is perfect for high school and college students in advanced algebra and calculus classes as well as students taking the SAT, PSAT, and ACT examsThis fully updated guide covers all enhancements to the TI-Nspire, including the touchpad and the updated software that can be purchased along with the deviceShows how to get maximum value from this versatile math tool

With updated screenshots and examples, "TI-Nspire For Dummies" provides practical, hands-on instruction to help students make the most of this revolutionary graphing calculator.

Learn Data Science Using SAS Studio - A Quick-Start Guide (Paperback, 1st ed.): Engy Fouda Learn Data Science Using SAS Studio - A Quick-Start Guide (Paperback, 1st ed.)
Engy Fouda
R1,329 R1,058 Discovery Miles 10 580 Save R271 (20%) Ships in 10 - 15 working days

Do you want to create data analysis reports without writing a line of code? This book introduces SAS Studio, a free data science web browser-based product for educational and non-commercial purposes. The power of SAS Studio comes from its visual point-and-click user interface that generates SAS code. It is easier to learn SAS Studio than to learn R and Python to accomplish data cleaning, statistics, and visualization tasks. The book includes a case study about analyzing the data required for predicting the results of presidential elections in the state of Maine for 2016 and 2020. In addition to the presidential elections, the book provides real-life examples including analyzing stocks, oil and gold prices, crime, marketing, and healthcare. You will see data science in action and how easy it is to perform complicated tasks and visualizations in SAS Studio. You will learn, step-by-step, how to do visualizations, including maps. In most cases, you will not need a line of code as you work with the SAS Studio graphical user interface. The book includes explanations of the code that SAS Studio generates automatically. You will learn how to edit this code to perform more complicated advanced tasks. The book introduces you to multiple SAS products such as SAS Viya, SAS Analytics, and SAS Visual Statistics. What You Will Learn Become familiar with SAS Studio IDE Understand essential visualizations Know the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction Write programs in SAS Get introduced to SAS-Viya, which is more potent than SAS studio Who This Book Is For A general audience of people who are new to data science, students, and data analysts and scientists who are experienced but new to SAS. No programming or in-depth statistics knowledge is needed.

Statistical Regression Modeling with R - Longitudinal and Multi-level Modeling (Paperback, 1st ed. 2021): Ding-Geng (Din) Chen,... Statistical Regression Modeling with R - Longitudinal and Multi-level Modeling (Paperback, 1st ed. 2021)
Ding-Geng (Din) Chen, Jenny K. Chen
R2,600 Discovery Miles 26 000 Ships in 10 - 15 working days

This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.

Multivariate Statistical Machine Learning Methods for Genomic Prediction (Paperback, 1st ed. 2022): Osval Antonio Montesinos... Multivariate Statistical Machine Learning Methods for Genomic Prediction (Paperback, 1st ed. 2022)
Osval Antonio Montesinos Lopez, Abelardo Montesinos Lopez, Jose Crossa
R1,509 Discovery Miles 15 090 Ships in 10 - 15 working days

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Using Mplus for Structural Equation Modeling - A Researcher's Guide (Paperback, 2nd Revised edition): E.Kevin Kelloway Using Mplus for Structural Equation Modeling - A Researcher's Guide (Paperback, 2nd Revised edition)
E.Kevin Kelloway
R1,701 Discovery Miles 17 010 Ships in 9 - 15 working days

Ideal for researchers and graduate students in the social sciences who require knowledge of structural equation modeling techniques to answer substantive research questions, Using Mplus for Structural Equation Modeling provides a reader-friendly introduction to the major types of structural equation models implemented in the Mplus framework. This practical book, which updates author E. Kevin Kelloway's 1998 book Using LISREL for Structural Equation Modeling, retains the successful five-step process employed in the earlier book, with a thorough update for use in the Mplus environment. Kelloway provides an overview of structural equation modeling techniques in Mplus, including the estimation of confirmatory factor analysis and observed variable path analysis. He also covers multilevel modeling for hypothesis testing in real life settings and offers an introduction to the extended capabilities of Mplus, such as exploratory structural equation modeling and estimation and testing of mediated relationships. A sample application with the source code, printout, and results is presented for each type of analysis.

A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Paperback, 1st ed. 2021): Domingo... A Course on Small Area Estimation and Mixed Models - Methods, Theory and Applications in R (Paperback, 1st ed. 2021)
Domingo Morales, Maria Dolores Esteban, Agustin Perez, Tomas Hobza
R2,465 Discovery Miles 24 650 Ships in 10 - 15 working days

This advanced textbook explores small area estimation techniques, covers the underlying mathematical and statistical theory and offers hands-on support with their implementation. It presents the theory in a rigorous way and compares and contrasts various statistical methodologies, helping readers understand how to develop new methodologies for small area estimation. It also includes numerous sample applications of small area estimation techniques. The underlying R code is provided in the text and applied to four datasets that mimic data from labor markets and living conditions surveys, where the socioeconomic indicators include the small area estimation of total unemployment, unemployment rates, average annual household incomes and poverty indicators. Given its scope, the book will be useful for master and PhD students, and for official and other applied statisticians.

Python for Marketing Research and Analytics (Paperback, 1st ed. 2020): Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit Python for Marketing Research and Analytics (Paperback, 1st ed. 2020)
Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit
R1,803 Discovery Miles 18 030 Ships in 10 - 15 working days

This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.

Continuous-Time Markov Decision Processes - Borel Space Models and General Control Strategies (Paperback, 1st ed. 2020): Alexey... Continuous-Time Markov Decision Processes - Borel Space Models and General Control Strategies (Paperback, 1st ed. 2020)
Alexey Piunovskiy, Yi Zhang; Foreword by Albert Nikolaevich Shiryaev
R4,432 Discovery Miles 44 320 Ships in 10 - 15 working days

This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.

Text Mining with MATLAB (R) (Paperback, 2nd ed. 2021): Rafael E. Banchs Text Mining with MATLAB (R) (Paperback, 2nd ed. 2021)
Rafael E. Banchs
R2,304 Discovery Miles 23 040 Ships in 10 - 15 working days

Text Mining with MATLAB (R) provides a comprehensive introduction to text mining using MATLAB. It is designed to help text mining practitioners, as well as those with little-to-no experience with text mining in general, familiarize themselves with MATLAB and its complex applications. The book is structured in three main parts: The first part, Fundamentals, introduces basic procedures and methods for manipulating and operating with text within the MATLAB programming environment. The second part of the book, Mathematical Models, is devoted to motivating, introducing, and explaining the two main paradigms of mathematical models most commonly used for representing text data: the statistical and the geometrical approach. Eventually, the third part of the book, Techniques and Applications, addresses general problems in text mining and natural language processing applications such as document categorization, document search, content analysis, summarization, question answering, and conversational systems. This second edition includes updates in line with the recently released "Text Analytics Toolbox" within the MATLAB product and introduces three new chapters and six new sections in existing ones. All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.

Structural Equation with lavaan (Hardcover): K Gana Structural Equation with lavaan (Hardcover)
K Gana
R3,808 Discovery Miles 38 080 Ships in 12 - 17 working days

This book presents an introduction to structural equation modeling (SEM) and facilitates the access of students and researchers in various scientific fields to this powerful statistical tool. It offers a didactic initiation to SEM as well as to the open-source software, lavaan, and the rich and comprehensive technical features it offers. Structural Equation Modeling with lavaan thus helps the reader to gain autonomy in the use of SEM to test path models and dyadic models, perform confirmatory factor analyses and estimate more complex models such as general structural models with latent variables and latent growth models. SEM is approached both from the point of view of its process (i.e. the different stages of its use) and from the point of view of its product (i.e. the results it generates and their reading).

Time Series Data Analysis in Oceanography - Applications using MATLAB (Hardcover, New edition): Chunyan Li Time Series Data Analysis in Oceanography - Applications using MATLAB (Hardcover, New edition)
Chunyan Li
R1,577 R1,374 Discovery Miles 13 740 Save R203 (13%) Ships in 12 - 17 working days

Chunyan Li is a course instructor with many years of experience in teaching about time series analysis. His book is essential for students and researchers in oceanography and other subjects in the Earth sciences, looking for a complete coverage of the theory and practice of time series data analysis using MATLAB. This textbook covers the topic's core theory in depth, and provides numerous instructional examples, many drawn directly from the author's own teaching experience, using data files, examples, and exercises. The book explores many concepts, including time; distance on Earth; wind, current, and wave data formats; finding a subset of ship-based data along planned or random transects; error propagation; Taylor series expansion for error estimates; the least squares method; base functions and linear independence of base functions; tidal harmonic analysis; Fourier series and the generalized Fourier transform; filtering techniques: sampling theorems: finite sampling effects; wavelet analysis; and EOF analysis.

An Introduction to Sequential Monte Carlo (Paperback, 1st ed. 2020): Nicolas Chopin, Omiros Papaspiliopoulos An Introduction to Sequential Monte Carlo (Paperback, 1st ed. 2020)
Nicolas Chopin, Omiros Papaspiliopoulos
R1,785 Discovery Miles 17 850 Ships in 10 - 15 working days

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a "Python corner," which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Fundamentals of Data Analytics - With a View to Machine Learning (Paperback, 1st ed. 2020): Rudolf Mathar, Gholamreza... Fundamentals of Data Analytics - With a View to Machine Learning (Paperback, 1st ed. 2020)
Rudolf Mathar, Gholamreza Alirezaei, Emilio Balda, Arash Behboodi
R1,829 Discovery Miles 18 290 Ships in 10 - 15 working days

This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.

Matlab (R) in Quality Assurance Sciences (Hardcover): L. Burstein Matlab (R) in Quality Assurance Sciences (Hardcover)
L. Burstein
R3,558 Discovery Miles 35 580 Ships in 12 - 17 working days

- includes MATLABr fundamentals, matrices, arrays, general graphics and specialized plots in quality assurance problems, script files, ordinary and partial differential equations - gives calculation of six sigma, total quality management, time series forecasting, reliability, process improvement, metrology, quality control and assurance, measurement and testing techniques - provides tools for graphical presentation, basic and special statistics and testing, ordinary and partial differential solvers, and fitting tools - includes comprehensive command information in tables Many books are available on MATLABr programming for engineers in general or in some specific area, but none in the highly topical field of quality assurance (QA). MATLABr in quality assurance sciences fills this gap as a compact guide for students, engineers, and scientists in this field. It concentrates on MATLABr fundamentals with examples of application to a wide range of current problems from general, nano and bio-technology, and statistical control, to medicine and industrial management. Examples cover both the school and advanced level; comprising calculations of total quality management, six sigma, time series, process improvement, metrology, quality control, human factors in quality assurance, measurement and testing techniques, quality project and function management, and customer satisfaction. The book covers key topics, including: the basics of software with examples; graphics and representations; numerical computation, scripts and functions for QA calculations; ODE and PDEPE solvers applied to QA problems; curve fitting and time series tool interfaces in calculations of quality; and statistics calculations applied to quality testing.

An SPSS Companion for the Third Edition of The Fundamentals of Political Science Research (Paperback): Paul M. Kellstedt, Guy... An SPSS Companion for the Third Edition of The Fundamentals of Political Science Research (Paperback)
Paul M. Kellstedt, Guy D. Whitten
R554 Discovery Miles 5 540 Ships in 9 - 15 working days

An SPSS Companion for the Third Edition of The Fundamentals of Political Science Research offers students a chance to delve into the world of SPSS using real political science data sets and statistical analysis techniques directly from Paul M. Kellstedt and Guy D. Whitten's best-selling textbook. Built in parallel with the main text, this workbook teaches students to apply the techniques they learn in each chapter by reproducing the analyses and results from each lesson using SPSS. Students will also learn to create all of the tables and figures found in the textbook, leading to an even greater mastery of the core material. This accessible, informative, and engaging companion walks through the use of SPSS step-by-step, using command lines and screenshots to demonstrate proper use of the software. With the help of these guides, students will become comfortable creating, editing, and using data sets in SPSS to produce original statistical analyses for evaluating causal claims. End-of-chapter exercises encourage this innovation by asking students to formulate and evaluate their own hypotheses.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, … Hardcover R2,644 Discovery Miles 26 440
Principal Component Analysis…
Parinya Sanguansat Hardcover R3,592 R3,356 Discovery Miles 33 560
Entity-Oriented Search
Krisztian Balog Hardcover R1,662 Discovery Miles 16 620
Kansei Engineering and Soft Computing…
Ying Dai Hardcover R4,888 Discovery Miles 48 880
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland Hardcover R2,922 Discovery Miles 29 220
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,707 Discovery Miles 17 070
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R12,404 Discovery Miles 124 040
The Global English Style Guide - Writing…
John R Kohl Hardcover R2,049 Discovery Miles 20 490
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas Hardcover R1,613 Discovery Miles 16 130
SAS Certified Specialist Prep Guide…
Sas Institute Hardcover R3,301 Discovery Miles 33 010

 

Partners