0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (29)
  • R500+ (1,401)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Hands-On Programming with R (Paperback): Garrett Grolemund Hands-On Programming with R (Paperback)
Garrett Grolemund
R1,018 R694 Discovery Miles 6 940 Save R324 (32%) Ships in 10 - 15 working days

Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer's memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R's package system and debugging tools Practice and apply R programming concepts as you learn them

MATLAB for Behavioral Scientists (Hardcover, 2nd edition): David A. Rosenbaum, Jonathan Vaughan, Brad  Wyble MATLAB for Behavioral Scientists (Hardcover, 2nd edition)
David A. Rosenbaum, Jonathan Vaughan, Brad Wyble
R5,509 Discovery Miles 55 090 Ships in 10 - 15 working days

Written specifically for those with no prior programming experience and minimal quantitative training, this accessible text walks behavioral science students and researchers through the process of programming using MATLAB. The book explores examples, terms, and programming needs relevant to those in the behavioral sciences and helps readers perform virtually any computational function in solving their research problems. Principles are illustrated with usable code. Each chapter opens with a list of objectives followed by new commands required to accomplish those goals. These objectives also serve as a reference to help readers easily relocate a section of interest. Sample code and output and chapter problems demonstrate how to write a program and explore a model so readers can see the results obtained using different equations and values. A web site provides solutions to selected problems and the book's program code output and examples so readers can manipulate them as needed. The outputs on the website have color, motion, and sound. Highlights of the new edition include: *Updated to reflect changes in the most recent version of MATLAB, including special tricks and new functions. *More information on debugging and common errors and more basic problems in the rudiments of MATLAB to help novice users get up and running more quickly. *A new chapter on Psychtoolbox, a suite of programs specifically geared to behavioral science research. *A new chapter on Graphical User Interfaces (GUIs) for user-friendly communication. *Increased emphasis on pre-allocation of memory, recursion, handles, and matrix algebra operators. The book opens with an overview of what is to come and tips on how to write clear programs followed by pointers for interacting with MATLAB, including its commands and how to read error messages. The matrices chapter reviews how to store and access data. Chapter 4 examines how to carry out calculations followed by a review of how to perform various actions depending on the conditions. The chapter on input and output demonstrates how to design programs to create dialogs with users (e.g., participants in studies) and read and write data to and from external files. Chapter 7 reviews the data types available in MATLAB. Readers learn how to write a program as a stand-alone module in Chapter 8. In Chapters 9 and 10 readers learn how to create line and bar graphs or reshape images. Readers learn how to create animations and sounds in Chapter 11. The book concludes with tips on how to use MATLAB with applications such as GUIs and Psychtoolbox. Intended as a primary text for Matlab courses for advanced undergraduate and/or graduate students in experimental and cognitive psychology and/or neuroscience as well as a supplementary text for labs in data (statistical) analysis, research methods, and computational modeling (programming), the book also appeals to individual researchers in these disciplines who wish to get up and running in MATLAB.

Introduction to Geometric Algebra Computing (Hardcover): Dietmar Hildenbrand Introduction to Geometric Algebra Computing (Hardcover)
Dietmar Hildenbrand
R2,513 Discovery Miles 25 130 Ships in 10 - 15 working days

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.

Algorithms for Data Science (Hardcover, 1st ed. 2016): Brian Steele, John Chandler, Swarna Reddy Algorithms for Data Science (Hardcover, 1st ed. 2016)
Brian Steele, John Chandler, Swarna Reddy
R2,749 R2,604 Discovery Miles 26 040 Save R145 (5%) Ships in 9 - 17 working days

This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover): Michael Panik Regression Modeling - Methods, Theory, and Computation with SAS (Hardcover)
Michael Panik
R4,297 Discovery Miles 42 970 Ships in 10 - 15 working days

Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.

The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs.

A Comprehensive, Accessible Source on Regression Methodology and Modeling
Requiring only basic knowledge of statistics and calculus, this book discusses how to use regression analysis for decision making and problem solving. It shows readers the power and diversity of regression techniques without overwhelming them with calculations.

Presenting Your Data with SPSS Explained (Hardcover): Perry R. Hinton, Isabella McMurray Presenting Your Data with SPSS Explained (Hardcover)
Perry R. Hinton, Isabella McMurray
R4,797 Discovery Miles 47 970 Ships in 10 - 15 working days

Data Presentation with SPSS Explained provides students with all the information they need to conduct small scale analysis of research projects using SPSS and present their results appropriately in their reports. Quantitative data can be collected in the form of a questionnaire, survey or experimental study. This book focuses on presenting this data clearly, in the form of tables and graphs, along with creating basic summary statistics. Data Presentation with SPSS Explained uses an example survey that is clearly explained step-by-step throughout the book. This allows readers to follow the procedures, and easily apply each step in the process to their own research and findings. No prior knowledge of statistics or SPSS is assumed, and everything in the book is carefully explained in a helpful and user-friendly way using worked examples. This book is the perfect companion for students from a range of disciplines including psychology, business, communication, education, health, humanities, marketing and nursing - many of whom are unaware that this extremely helpful program is available at their institution for their use.

Practical R 4 - Applying R to Data Manipulation, Processing and Integration (Paperback, 1st ed.): Jon Westfall Practical R 4 - Applying R to Data Manipulation, Processing and Integration (Paperback, 1st ed.)
Jon Westfall
R1,322 R1,101 Discovery Miles 11 010 Save R221 (17%) Ships in 18 - 22 working days

Get started with an accelerated introduction to the R ecosystem, programming language, and tools including R script and RStudio. Utilizing many examples and projects, this book teaches you how to get data into R and how to work with that data using R. Once grounded in the fundamentals, the rest of Practical R 4 dives into specific projects and examples starting with running and analyzing a survey using R and LimeSurvey. Next, you'll carry out advanced statistical analysis using R and MouselabWeb. Then, you'll see how R can work for you without statistics, including how R can be used to automate data formatting, manipulation, reporting, and custom functions. The final part of this book discusses using R on a server; you'll build a script with R that can run an RStudio Server and monitor a report source for changes to alert the user when something has changed. This project includes both regular email alerting and push notification. And, finally, you'll use R to create a customized daily rundown report of a person's most important information such as a weather report, daily calendar, to-do's and more. This demonstrates how to automate such a process so that every morning, the user navigates to the same web page and gets the updated report. What You Will Learn Set up and run an R script, including installation on a new machine and downloading and configuring R Turn any machine into a powerful data analytics platform accessible from anywhere with RStudio Server Write basic R scripts and modify existing scripts to suit your own needs Create basic HTML reports in R, inserting information as needed Build a basic R package and distribute it Who This Book Is For Some prior exposure to statistics, programming, and maybe SAS is recommended but not required.

R Markdown - The Definitive Guide (Paperback): Yihui Xie, Garrett Grolemund, J.J. Allaire R Markdown - The Definitive Guide (Paperback)
Yihui Xie, Garrett Grolemund, J.J. Allaire
R1,095 Discovery Miles 10 950 Ships in 9 - 17 working days

R Markdown: The Definitive Guide is the first official book authored by the core R Markdown developers that provides a comprehensive and accurate reference to the R Markdown ecosystem. With R Markdown, you can easily create reproducible data analysis reports, presentations, dashboards, interactive applications, books, dissertations, websites, and journal articles, while enjoying the simplicity of Markdown and the great power of R and other languages. In this book, you will learn Basics: Syntax of Markdown and R code chunks, how to generate figures and tables, and how to use other computing languages Built-in output formats of R Markdown: PDF/HTML/Word/RTF/Markdown documents and ioslides/Slidy/Beamer/PowerPoint presentations Extensions and applications: Dashboards, Tufte handouts, xaringan/reveal.js presentations, websites, books, journal articles, and interactive tutorials Advanced topics: Parameterized reports, HTML widgets, document templates, custom output formats, and Shiny documents. Yihui Xie is a software engineer at RStudio. He has authored and co-authored several R packages, including knitr, rmarkdown, bookdown, blogdown, shiny, xaringan, and animation. He has published three other books, Dynamic Documents with R and knitr, bookdown: Authoring Books and Technical Documents with R Markdown, and blogdown: Creating Websites with R Markdown. J.J. Allaire is the founder of RStudio and the creator of the RStudio IDE. He is an author of several packages in the R Markdown ecosystem including rmarkdown, flexdashboard, learnr, and radix. Garrett Grolemund is the co-author of R for Data Science and author of Hands-On Programming with R. He wrote the lubridate R package and works for RStudio as an advocate who trains engineers to do data science with R and the Tidyverse.

Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New): William B. Ober, Andrew Stevens Numerical and Analytical Methods with MATLAB for Electrical Engineers (Hardcover, New)
William B. Ober, Andrew Stevens
R4,237 Discovery Miles 42 370 Ships in 10 - 15 working days

Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB(r) for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students.

This book includes:

  • An introduction to the MATLAB programming environment
  • Mathematical techniques for matrix algebra, root finding, integration, and differential equations
  • More advanced topics, including transform methods, signal processing, curve fitting, and optimization
  • An introduction to the MATLAB graphical design environment, Simulink

Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming-not just button-pushing with a software program-the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

Advanced R Solutions (Paperback): Malte Grosser, Henning Bumann, Hadley Wickham Advanced R Solutions (Paperback)
Malte Grosser, Henning Bumann, Hadley Wickham
R1,331 Discovery Miles 13 310 Ships in 10 - 15 working days

*When R creates copies, and how it affects memory usage and code performance *Everything you could ever want to know about functions *The differences between calling and exiting handlers *How to employ functional programming to solve modular tasks *The motivation, mechanics, usage, and limitations of R's highly pragmatic S3 OO system *The R6 OO system, which is more like OO programming in other languages *The rules that R uses to parse and evaluate expressions *How to use metaprogramming to generate HTML or LaTeX with elegant R code *How to identify and resolve performance bottlenecks

Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback): Sunil Gupta Clinical Data Quality Checks for CDISC Compliance Using SAS (Paperback)
Sunil Gupta
R1,340 Discovery Miles 13 400 Ships in 10 - 15 working days

Clinical Data Quality Checks for CDISC Compliance using SAS is the first book focused on identifying and correcting data quality and CDISC compliance issues with real-world innovative SAS programming techniques such as Proc SQL, metadata and macro programming. Learn to master Proc SQL's subqueries and summary functions for multi-tasking process. Drawing on his more than 25 years' experience in the pharmaceutical industry, the author provides a unique approach that empowers SAS programmers to take control of data quality and CDISC compliance. This book helps you create a system of SDTM and ADaM checks that can be tracked for continuous improvement. How often have you encountered issues such as missing required variables, duplicate records, invalid derived variables and invalid sequence of two dates? With the SAS programming techniques introduced in this book, you can start to monitor these and more complex data and CDISC compliance issues. With increased standardization in SDTM and ADaM specifications and data values, codelist dictionaries can be created for better organization, planning and maintenance. This book includes a SAS program to create excel files containing unique values from all SDTM and ADaM variables as columns. In addition, another SAS program compares SDTM and ADaM codelist dictionaries with codelists from define.xml specifications. Having tools to automate this process greatly saves time from doing it manually. Features SDTMs and ADaMs Vitals SDTMs and ADaMs Data CDISC Specifications Compliance CDISC Data Compliance Protocol Compliance Codelist Dictionary Compliance

The Master Algorithm (Paperback): Pedro Domingos The Master Algorithm (Paperback)
Pedro Domingos
R456 R398 Discovery Miles 3 980 Save R58 (13%) Ships in 18 - 22 working days

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019): Udo Kuckartz, Stefan Radiker Analyzing Qualitative Data with MAXQDA - Text, Audio, and Video (Hardcover, 1st ed. 2019)
Udo Kuckartz, Stefan Radiker
R2,208 R2,063 Discovery Miles 20 630 Save R145 (7%) Ships in 9 - 17 working days

This book presents strategies for analyzing qualitative and mixed methods data with MAXQDA software, and provides guidance on implementing a variety of research methods and approaches, e.g. grounded theory, discourse analysis and qualitative content analysis, using the software. In addition, it explains specific topics, such as transcription, building a coding frame, visualization, analysis of videos, concept maps, group comparisons and the creation of literature reviews. The book is intended for masters and PhD students as well as researchers and practitioners dealing with qualitative data in various disciplines, including the educational and social sciences, psychology, public health, business or economics.

A Tour of Data Science - Learn R and Python in Parallel (Paperback): Nailong Zhang A Tour of Data Science - Learn R and Python in Parallel (Paperback)
Nailong Zhang
R1,522 Discovery Miles 15 220 Ships in 10 - 15 working days

A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source. Key features: Allows you to learn R and Python in parallel Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools - data.table and pandas Provides a concise and accessible presentation Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc. Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover): R Mezei An Introduction to SAGE Programming - With Applications to SAGE Interacts for Numerical Methods (Hardcover)
R Mezei
R1,816 Discovery Miles 18 160 Ships in 10 - 15 working days

Features a simplified presentation of numerical methods by introducing and implementing SAGE programs An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods emphasizes how to implement numerical methods using SAGE Math and SAGE Interacts and also addresses the fundamentals of computer programming, including if statements, loops, functions, and interacts. The book also provides a unique introduction to SAGE and its computer algebra system capabilities; discusses second and higher order equations and estimate limits; and determines derivatives, integrals, and summations. Providing critical resources for developing successful interactive SAGE numerical computations, the book is accessible without delving into the mathematical rigor of numerical methods. The author illustrates the benefits of utilizing the SAGE language for calculus and the numerical analysis of various methods such as bisection methods, numerical integration, Taylor s expansions, and Newton s iterations. Providing an introduction to the terminology and concepts involved, An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods also features: * An introduction to computer programming using SAGE * Many practical examples throughout to illustrate the application of SAGE Interacts for various numerical methods * Discussions on how to use SAGE Interacts and SAGE Cloud in order to create mathematical demonstrations * Numerous homework problems and exercises that allow readers to practice their programming skillset * A companion website that includes related SAGE programming code and select solutions to the homework problems and exercises An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods is an ideal reference for applied mathematicians who need to employ SAGE for the study of numerical methods and analysis. The book is also an appropriate supplemental textbook for upper-undergraduate and graduate-level courses in numerical methods.

Mastering Financial Pattern Recognition (Paperback): Sofien Kaabar Mastering Financial Pattern Recognition (Paperback)
Sofien Kaabar
R1,279 Discovery Miles 12 790 Ships in 10 - 15 working days

Candlesticks have become a key component of platforms and charting programs for financial trading. With these charts, traders can learn underlying patterns for interpreting price action history and forecasts. This A-Z guide shows portfolio managers, quants, strategists, and analysts how to use Python to recognize, scan, trade, and backtest the profitability of candlestick patterns. Financial author, trading consultant, and institutional market strategist Sofien Kaabar shows you how to create a candlestick scanner and indicator so you can compare the profitability of these patterns. With this hands-on guide, you'll also explore a new type of charting system similar to candlesticks, as well as new patterns that have never been presented before. With this book, you will: Create and understand the conditions required for classic and modern candlestick patterns Learn the market psychology behind them Use a framework to learn how backtesting trading strategies are conducted Explore different charting systems and understand their limitations Import OHLC historical FX data in Python in different time frames Use algorithms to scan for and reproduce patterns Learn a pattern's potential by evaluating its profitability and predictability

Computer Intensive Methods in Statistics (Hardcover): Silvelyn  Zwanzig, Behrang Mahjani Computer Intensive Methods in Statistics (Hardcover)
Silvelyn Zwanzig, Behrang Mahjani
R4,667 Discovery Miles 46 670 Ships in 10 - 15 working days

Presents the main ideas of computer-intensive statistical methods Gives the algorithms for all the methods Uses various plots and illustrations for explaining the main ideas Features the theoretical backgrounds of the main methods. Includes R codes for the methods and examples

Multiscale Forecasting Models (Hardcover, 1st ed. 2018): Lida Mercedes Barba Maggi Multiscale Forecasting Models (Hardcover, 1st ed. 2018)
Lida Mercedes Barba Maggi
R3,006 R2,472 Discovery Miles 24 720 Save R534 (18%) Ships in 10 - 15 working days

This book presents two new decomposition methods to decompose a time series in intrinsic components of low and high frequencies. The methods are based on Singular Value Decomposition (SVD) of a Hankel matrix (HSVD). The proposed decomposition is used to improve the accuracy of linear and nonlinear auto-regressive models. Linear Auto-regressive models (AR, ARMA and ARIMA) and Auto-regressive Neural Networks (ANNs) have been found insufficient because of the highly complicated nature of some time series. Hybrid models are a recent solution to deal with non-stationary processes which combine pre-processing techniques with conventional forecasters, some pre-processing techniques broadly implemented are Singular Spectrum Analysis (SSA) and Stationary Wavelet Transform (SWT). Although the flexibility of SSA and SWT allows their usage in a wide range of forecast problems, there is a lack of standard methods to select their parameters. The proposed decomposition HSVD and Multilevel SVD are described in detail through time series coming from the transport and fishery sectors. Further, for comparison purposes, it is evaluated the forecast accuracy reached by SSA and SWT, both jointly with AR-based models and ANNs.

Phylogenetic Comparative Methods in R (Paperback): Liam J Revell, Luke J Harmon Phylogenetic Comparative Methods in R (Paperback)
Liam J Revell, Luke J Harmon
R1,369 R1,217 Discovery Miles 12 170 Save R152 (11%) Ships in 10 - 15 working days

An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods

Applied Statistics Using Stata - A Guide for the Social Sciences (Paperback, 2nd Revised edition): Mehmet Mehmetoglu, Tor Georg... Applied Statistics Using Stata - A Guide for the Social Sciences (Paperback, 2nd Revised edition)
Mehmet Mehmetoglu, Tor Georg Jakobsen
R1,452 Discovery Miles 14 520 Ships in 9 - 17 working days

Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: * Original case studies and data sets * Practical exercises and lists of commands for each chapter * Downloadable Stata programmes created to work alongside chapters * A wide range of detailed applications using Stata * Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.

Compositional Data Analysis in Practice (Paperback): Michael Greenacre Compositional Data Analysis in Practice (Paperback)
Michael Greenacre
R1,510 Discovery Miles 15 100 Ships in 10 - 15 working days

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance. R Software The following repository contains data files and R scripts from the book https://github.com/michaelgreenacre/CODAinPractice. The R package easyCODA, which accompanies this book, is available on CRAN -- note that you should have version 0.25 or higher. The latest version of the package will always be available on R-Forge and can be installed from R with this instruction: install.packages("easyCODA", repos="http://R-Forge.R-project.org").

Patterns, Predictions, and Actions - Foundations of Machine Learning (Hardcover): Moritz Hardt, Benjamin Recht Patterns, Predictions, and Actions - Foundations of Machine Learning (Hardcover)
Moritz Hardt, Benjamin Recht
R1,468 R1,302 Discovery Miles 13 020 Save R166 (11%) Ships in 10 - 15 working days

An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Data Science with Julia (Paperback): Paul D. McNicholas, Peter Tait Data Science with Julia (Paperback)
Paul D. McNicholas, Peter Tait
R1,714 Discovery Miles 17 140 Ships in 10 - 15 working days

"This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Universite Cote d'Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Universite Cote d'Azur, Nice, France

Spatial Data Analysis in Ecology and Agriculture Using R (Hardcover, 2nd edition): Richard E. Plant Spatial Data Analysis in Ecology and Agriculture Using R (Hardcover, 2nd edition)
Richard E. Plant
R3,429 Discovery Miles 34 290 Ships in 10 - 15 working days

Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https://www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.

Reproducible Finance with R - Code Flows and Shiny Apps for Portfolio Analysis (Hardcover): Jonathan K. Regenstein, Jr. Reproducible Finance with R - Code Flows and Shiny Apps for Portfolio Analysis (Hardcover)
Jonathan K. Regenstein, Jr.
R5,340 Discovery Miles 53 400 Ships in 10 - 15 working days

Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Yamabe-type Equations on Complete…
Paolo Mastrolia, Marco Rigoli, … Hardcover R1,429 Discovery Miles 14 290
Matrix-Based Multigrid - Theory and…
Yair Shapira Hardcover R1,588 Discovery Miles 15 880
A Primer on Radial Basis Functions with…
Bengt Fornberg, Natasha Flyer Paperback R2,260 R2,128 Discovery Miles 21 280
A First Introduction to the Finite…
Andreas Oechsner, Marco OEchsner Hardcover R2,833 Discovery Miles 28 330
Numerical Methods for PDEs - State of…
Daniele Antonio Di Pietro, Alexandre Ern, … Hardcover R2,690 Discovery Miles 26 900
Best Books gegradeerde leesreeks: Vlak 1…
Best Books Paperback R108 Discovery Miles 1 080
Regression Analysis
Rudolf J. Freund, William J. Wilson, … Hardcover R2,231 Discovery Miles 22 310
Operational Research - IO2017, Valenca…
A. Ismael F. Vaz, Joao Paulo Almeida, … Hardcover R2,722 Discovery Miles 27 220
Numerical Methods for the Solution of…
A. N. Tikhonov, A. Goncharsky, … Hardcover R1,546 Discovery Miles 15 460
Numerical Analysis
Annette M Burden, Richard Burden, … Hardcover R1,350 R1,261 Discovery Miles 12 610

 

Partners