![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This book is a collection of thirty invited papers, covering the important parts of a rapidly developing area like "computational statistics." All contributions supply information about a specialized topic in a tutorial and comprehensive style. Newest results and developments are discussed. Starting with the foundations of computational statistics, i.e. numerical reliability of software packages or construction principles for pseudorandom number generators, the volume includes design considerations on statistical programming languages and the basic issues of resampling techniques. Also covered are areas like design of experiments, graphical techniques, modelling and testing problems, a review of clustering algorithms, and concise discussions of regression trees or cognitive aspects of authoring systems.
Mathematica combines symbolic and numerical calculations, plots, graphics programming, list calculations and structured documentation into an interactive environment. This book covers the program and shows with practical examples how even more complex problems can be solved with just a few commands. From the reviews: "A valuable introductory textbook on Mathematica and is very useful to scientists and engineers who use Mathematica in their work." -- ZENTRALBLATT MATH
This book assembles papers which were presented at the biennial sympo sium in Computational Statistics held und er the a uspices of the International Association for Statistical Computing (IASC), a section of ISI, the Interna tional Statistical Institute. This symposium named COMPSTAT '94 was organized by the Statistical Institutes of the University of Vienna and the University of Technology of Vienna, Austria. The series of COMPSTAT Symposia started 1974 in Vienna. Mean while they took place every other year in Berlin (Germany, 1976), Leiden (The Netherlands, 1978), Edinburgh (Great Britain, 1980), Toulouse (France, 1982), Prague (Czechoslovakia, 1984), Rom (Italy, 1986), Copenhagen (Den mark, 1988), Dubrovnik (Yugoslavia, 1990) and Neuchatel (Switzerland, 1992). This year we are celebrating the 20th anniversary in Vienna, Austria. It has obviously been observed a movement from "traditional" computa tional statistics with emphasis on methods which produce results quickly and reliably, to computationally intensive methods like resampling procedures, Bayesian methods, dynamic graphics, to very recent areas like neural net works, accentuation on spatial statistics, huge data sets, analysis strategies, etc. For the organization of the symposium, new guidelines worked out by the IASC in written form were in effect this time. The goal was to refresh somehow the spirit of the start of COMPSTAT '74, keep the tradition of the series and ensure a certain continuity in the sequence of biannual meetings."
The analysis of time series data is an important aspect of data analysis across a wide range of disciplines, including statistics, mathematics, business, engineering, and the natural and social sciences. This package provides both an introduction to time series analysis and an easy-to-use version of a well-known time series computing package called Interactive Time Series Modelling. The programs in the package are intended as a supplement to the text Time Series: Theory and Methods, 2nd edition, also by Peter J. Brockwell and Richard A. Davis. Many researchers and professionals will appreciate this straightforward approach enabling them to run desk-top analyses of their time series data. Amongst the many facilities available are tools for: ARIMA modelling, smoothing, spectral estimation, multivariate autoregressive modelling, transfer-function modelling, forecasting, and long-memory modelling. This version is designed to run under Microsoft Windows 3.1 or later. It comes with two diskettes: one suitable for less powerful machines (IBM PC 286 or later with 540K available RAM and 1.1 MB of hard disk space) and one for more powerful machines (IBM PC 386 or later with 8MB of RAM and 2.6 MB of hard disk space available).
Maple is a computer algebraic system with a fast-growing number of users in universities, schools and other institutions. Werner Burkhardt provides a detailed step-by-step introduction for all first-time users, enabling you to become familiar with the way Maple works, as quickly and easily as possible. Using as examples problems from many different aspects of mathematics, problem solving using Maple is fully described in this easy-to-follow tutorial text. Each chapter is self-contained, so you can easily select areas of your own special interest. There are some 'test yourself' problems at the end of each chapter to check your progress, with solutions provided at the end of the book.
Master the tools of MATLAB through hands-on examplesShows How to Solve Math Problems Using MATLAB The mathematical software MATLAB (R) integrates computation, visualization, and programming to produce a powerful tool for a number of different tasks in mathematics. Focusing on the MATLAB toolboxes especially dedicated to science, finance, and engineering, MATLAB (R) with Applications to Engineering, Physics and Finance explains how to perform complex mathematical tasks with relatively simple programs. This versatile book is accessible enough for novices and users with only a fundamental knowledge of MATLAB, yet covers many sophisticated concepts to make it helpful for experienced users as well. The author first introduces the basics of MATLAB, describing simple functions such as differentiation, integration, and plotting. He then addresses advanced topics, including programming, producing executables, publishing results directly from MATLAB programs, and creating graphical user interfaces. The text also presents examples of Simulink (R) that highlight the advantages of using this software package for system modeling and simulation. The applications-dedicated chapters at the end of the book explore the use of MATLAB in digital signal processing, chemical and food engineering, astronomy, optics, financial derivatives, and much more.
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author's website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
This volume presents the published Proceedings of the joint meeting of GUM92 and the 7th International Workshop on Statistical Modelling, held in Munich, Germany from 13 to 17 July 1992. The meeting aimed to bring together researchers interested in the development and applications of generalized linear modelling in GUM and those interested in statistical modelling in its widest sense. This joint meeting built upon the success of previous workshops and GUM conferences. Previous GUM conferences were held in London and Lancaster, and a joint GUM Conference/4th Modelling Workshop was held in Trento. (The Proceedings of previous GUM conferences/Statistical Modelling Workshops are available as numbers 14 , 32 and 57 of the Springer Verlag series of Lecture Notes in Statistics). Workshops have been organized in Innsbruck, Perugia, Vienna, Toulouse and Utrecht. (Proceedings of the Toulouse Workshop appear as numbers 3 and 4 of volume 13 of the journal Computational Statistics and Data Analysis). Much statistical modelling is carried out using GUM, as is apparent from many of the papers in these Proceedings. Thus the Programme Committee were also keen on encouraging papers which addressed problems which are not only of practical importance but which are also relevant to GUM or other software development. The Programme Committee requested both theoretical and applied papers. Thus there are papers in a wide range of practical areas, such as ecology, breast cancer remission and diabetes mortality, banking and insurance, quality control, social mobility, organizational behaviour.
Learn How to Program Stochastic Models Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data. The book's four parts teach: Core knowledge of R and programming concepts How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation Essentials of probability, random variables, and expectation required to understand simulation Stochastic modelling and simulation, including random number generation and Monte Carlo integration In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size. Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables. Building readers' statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.
Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey data.Presents a general introduction to customer surveys, within an organization's business cycle.Contains classical techniques with modern and non standard tools.Focuses on probabilistic techniques from the area of statistics/data analysis and covers all major recent developments.Accompanied by a supporting website containing datasets and R scripts. Customer survey specialists, quality managers and market researchers will benefit from this book as well as specialists in marketing, data mining and business intelligence fields.
This third edition of Paul Murrell's classic book on using R for graphics represents a major update, with a complete overhaul in focus and scope. It focuses primarily on the two core graphics packages in R - graphics and grid - and has a new section on integrating graphics. This section includes three new chapters: importing external images in to R; integrating the graphics and grid systems; and advanced SVG graphics. The emphasis in this third edition is on having the ability to produce detailed and customised graphics in a wide variety of formats, on being able to share and reuse those graphics, and on being able to integrate graphics from multiple systems. This book is aimed at all levels of R users. For people who are new to R, this book provides an overview of the graphics facilities, which is useful for understanding what to expect from R's graphics functions and how to modify or add to the output they produce. For intermediate-level R users, this book provides all of the information necessary to perform sophisticated customizations of plots produced in R. For advanced R users, this book contains vital information for producing coherent, reusable, and extensible graphics functions.
CONTRIBUTED BY DR. ANTHONY C. HEARN THE RAND CORPORATION, SANTA MONICA, CALIFORNIA REDUCE is a computer program for algebraic computation that IS III world-wide use by thousands of scientists, engineers, and mathematicians. Although it traces its beginnings to 1963, until recently it has only been available on main-frame computers because of its relatively large resource requirements. In 1980 I predicted (1) that by the mid-1980's it would be possible to obtain personal computers in the $10,000 $20,000 range capable of running REDUCE. I am therefore delighted to see that machines of the power of the IBM PC can now run this system, even though these computers are more modestly priced than my 1980 vision of the personal algebra machine. In addition to the need for the more widespread access that personal computers can now provide, there has been a longstanding need for a textbook to help the beginning user become better acquainted with the system. I am therefore very glad that Dr. Rayna has undertaken to write such a book, just as the era of the REDUCE personal algebra machine is beginning. In order to understand the nature of REDUCE, a little history is in order. In 1963 I met Dr. John McCarthy, the inventor of LISP.
Einfuhrung in die Grundlagen der "praktischen" Mathematik fur Studierende der Wirtschafts- und Ingenieurwissenschaften."
Written for those with little or no experience in using computers for statistical analysis, this book introduces SPSS/PC+, the market leader PC package. A Guide to SPSS/PC+ teaches the use of SPSS/PC+ clearly and simply.
Statistics and computing share many close relationships. Computing
now permeates every aspect of statistics, from pure description to
the development of statistical theory. At the same time, the
computational methods used in statistical work span much of
computer science. Elements of Statistical Computing covers the
broad usage of computing in statistics. It provides a comprehensive
account of the most important computational statistics. Included
are discussions of numerical analysis, numerical integration, and
smoothing.
R Markdown: The Definitive Guide is the first official book authored by the core R Markdown developers that provides a comprehensive and accurate reference to the R Markdown ecosystem. With R Markdown, you can easily create reproducible data analysis reports, presentations, dashboards, interactive applications, books, dissertations, websites, and journal articles, while enjoying the simplicity of Markdown and the great power of R and other languages. In this book, you will learn Basics: Syntax of Markdown and R code chunks, how to generate figures and tables, and how to use other computing languages Built-in output formats of R Markdown: PDF/HTML/Word/RTF/Markdown documents and ioslides/Slidy/Beamer/PowerPoint presentations Extensions and applications: Dashboards, Tufte handouts, xaringan/reveal.js presentations, websites, books, journal articles, and interactive tutorials Advanced topics: Parameterized reports, HTML widgets, document templates, custom output formats, and Shiny documents. Yihui Xie is a software engineer at RStudio. He has authored and co-authored several R packages, including knitr, rmarkdown, bookdown, blogdown, shiny, xaringan, and animation. He has published three other books, Dynamic Documents with R and knitr, bookdown: Authoring Books and Technical Documents with R Markdown, and blogdown: Creating Websites with R Markdown. J.J. Allaire is the founder of RStudio and the creator of the RStudio IDE. He is an author of several packages in the R Markdown ecosystem including rmarkdown, flexdashboard, learnr, and radix. Garrett Grolemund is the co-author of R for Data Science and author of Hands-On Programming with R. He wrote the lubridate R package and works for RStudio as an advocate who trains engineers to do data science with R and the Tidyverse.
In this monograph some stability properties of linear, time-variant, discrete-time systems are summarized, where some properties are well known, some are little-known facts, and a few may be new. Models for this treatise an the asymp- totical behaviour of solutions of difference equations are the commonly known excellent books of CESARI [3] and CONTI [5]. In the tables of Chapter 1 the definitions and the essen- tial statements an stability of discrete-time systems are summarized, such that Chapter 2 to 5 may be regarded as explaining appendices for these tables. I am grateful to Paul Ludyk, who typed and corrected the manuscript with great skill and patience, and Alois Ludyk, who drew the figures with great artistic skill. Gunter Ludyk Bremen, January 1985 Contents Notations 1 1. Introduction and Summary 4 2. Mathematical Description of Discrete-Time Systems 16 2. 1 State Equations 16 2. 2 Properties of the Transition Matrix 19 2. 3 LAGRANGE-Identity and GREEN's Formula for Difference Equations 20 2. 4 Estimations for the Norm of the Transition Matrix 21 3. Stability of Free Discrete-Time Systems 34 3. 1 LJAPUNOW- and LAGRANGE-Stability 34 3. 2 Short Time Boundedness 40 3. 3 UniformStability 45 3. 4 Asymptotic Stability 63 3. 5 P-stability 70 3. 6 Exponential and Uniform Asymptotic Stability 75 3. 7 Relations between the Stability Glasses 84 4. Stability of Forced Discrete-Time Systems 86 4. 1 Preliminary Results 86 4. 2 Input-State Stability 93 4.
Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers' understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang, Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.
This book introduces econometric analysis of cross section, time series and panel data with the application of statistical software. It serves as a basic text for those who wish to learn and apply econometric analysis in empirical research. The level of presentation is as simple as possible to make it useful for undergraduates as well as graduate students. It contains several examples with real data and Stata programmes and interpretation of the results. While discussing the statistical tools needed to understand empirical economic research, the book attempts to provide a balance between theory and applied research. Various concepts and techniques of econometric analysis are supported by carefully developed examples with the use of statistical software package, Stata 15.1, and assumes that the reader is somewhat familiar with the Strata software. The topics covered in this book are divided into four parts. Part I discusses introductory econometric methods for data analysis that economists and other social scientists use to estimate the economic and social relationships, and to test hypotheses about them, using real-world data. There are five chapters in this part covering the data management issues, details of linear regression models, the related problems due to violation of the classical assumptions. Part II discusses some advanced topics used frequently in empirical research with cross section data. In its three chapters, this part includes some specific problems of regression analysis. Part III deals with time series econometric analysis. It covers intensively both the univariate and multivariate time series econometric models and their applications with software programming in six chapters. Part IV takes care of panel data analysis in four chapters. Different aspects of fixed effects and random effects are discussed here. Panel data analysis has been extended by taking dynamic panel data models which are most suitable for macroeconomic research. The book is invaluable for students and researchers of social sciences, business, management, operations research, engineering, and applied mathematics.
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Pour Ie cinquieme congres de la serie, COMPSTAT 82 reunit environ 500 participants d'origines scientifiques et geographiques tres variees, prouvant a l'evidence l'interet persis tant de la communaute scientifique pour tous les problemes de calculs statistiques. Le Comite de Programme charge de l'organisation scientifique du Congres etait com pose de: o S. Apelt (Republique democratique d'Allemagne) - A. Bj6rck (Suede) - H. Caussinus (France), President - Y. Escoufier (France) - A. de Falguerolles (France), Secretaire - J. W. Frane (U. S. A. ) - J. Gordesch (Republique Federale d'Allemagne) - Th. Havranek (Tchechoslovaquie) - N. Lauro (Italie) - C. Millier (France) - R. J. Mokken (pays-Bas)- R. Tomassone (France) - D. Wishart (Royaume Uni) Ce Comite a decide d'augmenter Ie nombre des conferenciers invites, cherchant de la sorte une representation des diverses ecoles ainsi que l'introduction de nouveaux themes. La tache la plus difficile a ensuite ete de selectionner une soixantaine de contributions parmi 250 soumissions. La encore Ie Comite de Programme s'est efforce de favoriser des voies qui semblaient les plus nouvelles et a essaye de maintenir une bonne repartition scientifique et geographique. Cependant, comme dans les precedents congres COMPSTAT, il a donne la preference aux propositions clairement marquees simultanement du double aspect Statistique et Calcul. Dans bien des cas, ces deux aspects sont tres lies rendant en particulier difficile et peu pertinente toute classification fine des contributions."
Incorporating new topics and original material, Introduction to Finite and Spectral Element Methods Using MATLAB (R), Second Edition enables readers to quickly understand the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Readers gain hands-on computational experience by using the free online FSELIB library of MATLAB (R) functions and codes. With the book as a user guide, readers can immediately run the codes and graphically display solutions to a variety of elementary and advanced problems. New to the Second Edition Two new chapters with updated material Updated detailed proofs and original derivations New schematic illustrations and graphs Additional solved problems Updated MATLAB software, including improved and new computer functions as well as complete finite element codes incorporating domain discretization modules in three dimensions Suitable for self-study or as a textbook in various science and engineering courses, this self-contained book introduces the fundamentals on a need-to-know basis and emphasizes the development of algorithms and the computer implementation of essential procedures. The text first explains basic concepts and develops the algorithms before addressing problems in solid mechanics, fluid mechanics, and structural mechanics.
Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer's memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R's package system and debugging tools Practice and apply R programming concepts as you learn them
This book discusses advanced topics such as R core programing, object oriented R programing, parallel computing with R, and spatial data types. The author leads readers to merge mature and effective methdologies in traditional programing to R programing. It shows how to interface R with C, Java, and other popular programing laguages and platforms. |
![]() ![]() You may like...
Becoming an Organizational Scholar…
Tomislav Hernaus, Matej Cerne
Hardcover
R3,394
Discovery Miles 33 940
Organizational Behavior - Managing…
Jean Phillips, Ricky Griffin, …
Hardcover
R1,271
Discovery Miles 12 710
|