![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
The updated guide to the newest graphing calculator from Texas Instruments The TI-Nspire graphing calculator is popular among high school and college students as a valuable tool for calculus, AP calculus, and college-level algebra courses. Its use is allowed on the major college entrance exams. This book is a nuts-and-bolts guide to working with the TI-Nspire, providing everything you need to get up and running and helping you get the most out of this high-powered math tool.Texas Instruments' TI-Nspire graphing calculator is perfect for high school and college students in advanced algebra and calculus classes as well as students taking the SAT, PSAT, and ACT examsThis fully updated guide covers all enhancements to the TI-Nspire, including the touchpad and the updated software that can be purchased along with the deviceShows how to get maximum value from this versatile math tool With updated screenshots and examples, "TI-Nspire For Dummies" provides practical, hands-on instruction to help students make the most of this revolutionary graphing calculator.
.".".I know of no better book of its kind..." (Journal of the Royal Statistical Society, Vol 169 (1), January 2006)" A revised and updated edition of this bestselling introductory textbook to statistical analysis using the leading free software package R This new edition of a bestselling title offers a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a wide range of disciplines. Step-by-step instructions help the non-statistician to fully understand the methodology. The book covers the full range of statistical techniques likely to be needed to analyse the data from research projects, including elementary material like t--tests and chi--squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. Includes numerous worked examples and exercises within each chapter.
An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks - with full solutions - are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered
This new edition of the successful multi-disciplinary text Statistical Modelling in GLIM takes into account new developments in both statistical software and statistical modelling. Including three new chapters on mixture and random effects models, it provides a comprehensive treatment of the theory of statistical modelling with generalised linear models with an emphasis on applications to practical problems and an expanded discussion of statistical theory. A wide range of case studies is also provided, using the normal, binomial, Poisson, multinomial, gamma, exponential and Weibull distributions. This book is ideal for graduates and research students in applied statistics and a wide range of quantitative disciplines, including biology, medicine and the social sciences. Professional statisticians at all levels will also find it an invaluable desktop companion.
Over two hundred novel and innovative computer algebra worksheets
or "recipes" will enable readers in engineering, physics, and
mathematics to easily and rapidly solve and explore most problems
they encounter in their mathematical physics studies. While the aim
of this text is to illustrate applications, a brief synopsis of the
fundamentals for each topic is presented, the topics being
organized to correlate with those found in traditional mathematical
physics texts. The recipes are presented in the form of stories and
anecdotes, a pedagogical approach that makes a mathematically
challenging subject easier and more fun to learn. * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All recipes are contained on a CD-ROM provided with the text * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is used, accompanied with amusing or thought-provoking quotations * Study problems, which are presented as Supplementary Recipes, are fully solved and annotated and also provided on the CD-ROM This is a self-contained and standalone text, similar in style and format to Computer Algebra Recipes: A Gourmet's Guide to Mathematical Models of Science (ISBN 0-387-95148-2), Springer New York 2001 and Computer Algebra Recipes for Classical Mechanics (ISBN 0-8176-4291-9), BirkhAuser 2003. Computer Algebra Recipes for Mathematical Physics may be used in the classroom, for self-study, as a reference, or asa text for an online course.
The second edition of this popular guide demonstrates the process of entering and analyzing data using the latest version of SPSS (12.0), and is also appropriate for those using earlier versions of SPSS. The book is easy to follow because all procedures are outlined in a step-by-step format designed for the novice user. Students are introduced to the rationale of statistical tests and detailed explanations of results are given through clearly annotated examples of SPSS output. Topics covered range from descriptive statistics through multiple regression analysis. In addition, this guide includes topics not typically covered in other books such as probability theory, interaction effects in analysis of variance, factor analysis, and scale reliability. Chapter exercises reinforce the text examples and may be performed for further practice, for homework assignments, or in computer laboratory sessions. This book can be used in two ways: as a stand-alone manual for students wishing to learn data analysis techniques using SPSS for Windows, or in research and statistics courses to be used with a basic statistics text. The book provides hands-on experience with actual data sets, helps students choose appropriate statistical tests, illustrates the meaning of results, and provides exercises to be completed for further practice or as homework assignments. Susan B. Gerber, Ph.D. is Research Assistant Professor of Education at State University of New York at Buffalo. She is director of the Educational Technology program and holds degrees in Statistics and Educational Psychology. Kristin Voelkl Finn, Ph.D. is Assistant Professor of Education at Canisius College. She teaches graduate courses in research methodology and conducts research on adolescent problem behavior.
Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB(R) The Second Edition of Applied Optimization with MATLAB(R) Programming enables readers to harness all the features of MATLAB(R) to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB(R) tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB(R) code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.
This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.
"Finite Difference Fundamentals in MATLAB" is devoted to the solution of numerical problems employing basic finite difference (FD) methods in MATLAB platform. FD is one momentous tool of numerical analysis on science and engineering problems. Advent of faster speed computer processors and user-friendliness of MATLAB have marvelously facilitated FD solution obtaining what is demonstrated in every chapter. Another aspect of the text is juxtaposition on computing and graphing features. The coverage narrates key executional MATLAB style of FD terminologies without arithmetic complexity. Self-training illustrations and end-of-chapter exercises inspire the reader a checkup on thorough understanding. The comprehensive introduction will benefit science and engineering undergraduates studying numerical analysis issues ranging archetype to advanced.
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
"JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP, Fifth Edition," is the perfect mix of software manual and statistics text. Authors John Sall, Ann Lehman, Mia Stephens, and Lee Creighton provide hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. "JMP Start Statistics, Fifth Edition," includes many new features of JMP 10, including an enhanced ability to manage a JMP session by easily tracking open and recently opened JMP tables; scripts, analyses, JMP projects, and other files; vastly expanded tools for instructors to demonstrate statistical concepts and interactive scripts to help students grasp difficult topics; Split-Plot designs with examples; examples of Graph Builder and Control Chart Builder; and new features that make the software easier to use.
Using a visual data analysis approach, wavelet concepts are explained in a way that is intuitive and easy to understand. Furthermore, in addition to wavelets, a whole range of related signal processing techniques such as wavelet packets, local cosine analysis, and matching pursuits are covered, and applications of wavelet analysis are illustrated -including nonparametric function estimation, digital image compression, and time-frequency signal analysis. This book and software package is intended for a broad range of data analysts, scientists, and engineers. While most textbooks on the subject presuppose advanced training in mathematics, this book merely requires that readers be familiar with calculus and linear algebra at the undergraduate level.
Go from total MATLAB newbie to plotting graphs and solving equations in a flash! MATLAB is one of the most powerful and commonly used tools in the STEM field. But did you know it doesn't take an advanced degree or a ton of computer experience to learn it? MATLAB For Dummies is the roadmap you've been looking for to simplify and explain this feature-filled tool. This handy reference walks you through every step of the way as you learn the MATLAB language and environment inside-and-out. Starting with straightforward basics before moving on to more advanced material like Live Functions and Live Scripts, this easy-to-read guide shows you how to make your way around MATLAB with screenshots and newly updated procedures. It includes: A comprehensive introduction to installing MATLAB, using its interface, and creating and saving your first file Fully updated to include the 2020 and 2021 updates to MATLAB, with all-new screenshots and up-to-date procedures Enhanced debugging procedures and use of the Symbolic Math Toolbox Brand new instruction on working with Live Scripts and Live Functions, designing classes, creating apps, and building projects Intuitive walkthroughs for MATLAB's advanced features, including importing and exporting data and publishing your work Perfect for STEM students and new professionals ready to master one of the most powerful tools in the fields of engineering, mathematics, and computing, MATLAB For Dummies is the simplest way to go from complete newbie to power user faster than you would have thought possible.
This book discusses questions of numerical solutions of applied problems on parallel computing systems. Nowadays, engineering and scientific computations are carried out on parallel computing systems, which provide parallel data processing on a few computing nodes. In the development of up-to-date applied software, this feature of computers must be taken into account for the maximum efficient usage of their resources. In constructing computational algorithms, we should separate relatively independent subproblems in order to solve them on a single computing node.
This textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examplesis approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter."
To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.
For first-year or introductory Engineering courses Best-selling author Delores Etter provides an up-to-date introduction to MATLAB. Using a consistent five-step problem-solving methodology, Etter describes the computational and visualization capabilities of MATLAB and illustrates the problem solving process through a variety of engineering examples and applications. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Customize your Course with ESource: Instructors can adopt this title as is, or use the ESource website to select the chapters they need, in the sequence they want. *Present a Consistent Methodology for Solving Engineering Problems: Chapter 1 introduces a five-step process for solving engineering problems using the computer *Describe the Exceptional Computational and Visualization Capabilities of MATLAB: Students will gain a clear understanding of how to use MATLAB.*Illustrate the Problem-solving Process through a Variety of Engineering Examples and Applications: Numerous examples emphasize the creation of readable and simple solutions to develop and reinforce problem-solving skills. *Keep your Course Current with Discussion of the Latest Technologies: The discussions, screen captures, examples, and problem solutions have been updated to reflect MATLAB Version 8.2, R2013b.
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
This volume contains the papers presented at the 8th International Conf- ence on Independent Component Analysis (ICA) and Source Separation held in Paraty, Brazil, March 15-18, 2009. This year's event resulted from scienti?c collaborations between a team of researchers from ?ve di?erent Brazilian u- versities and received the support of the Brazilian Telecommunications Society (SBrT) as well as the ?nancial sponsorship of CNPq, CAPES and FAPERJ. Independent component analysis and signal separation is one of the most - citing current areas of research in statistical signal processing and unsupervised machine learning. The area has received attention from severalresearchcom- nities including machine learning, neural networks, statistical signal processing and Bayesian modeling. Independent component analysis and signal separation has applications at the intersection of many science and engineering disciplines concerned with understanding and extracting useful information from data as diverse as neuronal activity and brain images, bioinformatics, communications, the World Wide Web, audio, video, sensor signals, and time series.
Data Presentation with SPSS Explained provides students with all the information they need to conduct small scale analysis of research projects using SPSS and present their results appropriately in their reports. Quantitative data can be collected in the form of a questionnaire, survey or experimental study. This book focuses on presenting this data clearly, in the form of tables and graphs, along with creating basic summary statistics. Data Presentation with SPSS Explained uses an example survey that is clearly explained step-by-step throughout the book. This allows readers to follow the procedures, and easily apply each step in the process to their own research and findings. No prior knowledge of statistics or SPSS is assumed, and everything in the book is carefully explained in a helpful and user-friendly way using worked examples. This book is the perfect companion for students from a range of disciplines including psychology, business, communication, education, health, humanities, marketing and nursing - many of whom are unaware that this extremely helpful program is available at their institution for their use.
Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.
Statistical methods are a key tool for all scientists working with data, but learning the basics continues to challenge successive generations of students. This accessible textbook provides an up-to-date introduction to the classical techniques and modern extensions of linear model analysis-one of the most useful approaches for investigating scientific data in the life and environmental sciences. While some of the foundational analyses (e.g. t tests, regression, ANOVA) are as useful now as ever, best practice moves on and there are many new general developments that offer great potential. The book emphasizes an estimation-based approach that takes account of recent criticisms of over-use of probability values and introduces the alternative approach that uses information criteria. This new edition includes the latest advances in R and related software and has been thoroughly "road-tested" over the last decade to create a proven textbook that teaches linear and generalized linear model analysis to students of ecology, evolution, and environmental studies (including worked analyses of data sets relevant to all three disciplines). While R is used throughout, the focus remains firmly on statistical analysis. The New Statistics with R is suitable for senior undergraduate and graduate students, professional researchers, and practitioners in the fields of ecology, evolution and environmental studies.
Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.
This practical guide is designed for students and researchers with an existing knowledge of R who wish to learn how to apply it in an epidemiological context and exploit its versatility. It also serves as a broader introduction to the quantitative aspects of modern practical epidemiology. The standard tools used in epidemiology are described and the practical use of R for these is clearly explained and laid out. R code examples, many with output, are embedded throughout the text. The entire code is also available on the companion website so that readers can reproduce all the results and graphs featured in the book. Epidemiology with R is an advanced textbook suitable for senior undergraduate and graduate students, professional researchers, and practitioners in the fields of human and non-human epidemiology, public health, veterinary science, and biostatistics. |
You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,530
Discovery Miles 15 300
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland
Hardcover
R2,889
Discovery Miles 28 890
Portfolio and Investment Analysis with…
John B. Guerard, Ziwei Wang, …
Hardcover
R2,322
Discovery Miles 23 220
|