![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Dieses Buch ist als Einfuhrung in die Statistik gedacht. Die dargelegten Methoden und Gedankengange sind aus den Statistik- vorlesungen fur Volks- und Betriebswirtschafter hervorgegangen, die ich seit rund einem Jahrzehnt an der Universitat in Freiburg/Schweiz gehalten habe. Das Buch richtet sich deshalb vor allem an Volks- und Betriebs- wirtschafter. Mit Rucksicht auf diesen Leserkreis wurden die notwendigen mathematischen Ableitungen moeglichst luckenlos durchgefuhrt, damit auch Leser, die in der Mathematik weniger bewan ert sind, den Darlegungen folgen und mathematisch anspruchsvollere Lehrbucher der Statistik mit mehr Gewinn lesen koennen. Meine Erfahrung hat gezeigt, dass diese Ableitungen fur das bessere Verstandnis der einzelnen Methoden und deren Grenzen unbedingt erforderlich sind. Der mathematisch geschulte Leser moege deshalb diese mathematische Weitschweifigkeit verzeihen. Das vorliegende Buch durfte deshalb zwischen den elementaren Statistik- buchern und den sehr anspruchsvollen Lehrbuchern der mathematischen Statistik seinen Platz haben. Im Anschluss an dieses Buch sind weitere Darstellungen -uber die Stichprobentheorie, die Versuchsplanung, die statistischen Testverfahren und die Zeitreihenanalyse geplant. Des weiteren wird auch das Verhaltnis zwischen Statistik, Operations Research, OEkonoemetrie und Datenverarbei- tung behandelt werden. Dem Verlag sei an dieser Stelle fur sein Verstandnis und seine her- vorragende Arbeit gedankt. Sollte diesem Buch Erfolg beschieden sein, so ist er weitgehend auf die sorgfaltige Arbeit des Verlags zuruck- zufuhren. Freiburg/Schweiz, Februar 1970 Ernst P. Billeter Inhaltsverzeichnis 1. Geschichte, Wesen und Begriff der Statistik 1. 1. Geschichte der Statistik . 1 1. 2. Wesen der Statistik . 5 7 1. 3. Begriff der Statistik 2. Grundlagen der Statistik 2. 1. Wahrscheinlichkeitsrechnung . . . . . . .
This workbook and solutions manual is intended for advanced undergraduate or beginning graduate students as a supplement to a traditional course in numerical mathematics and as preparation for independent research involving numerical mathematics. The solutions manual provides complete MATLAB code and numerical results for each of the exercises in the workbook and will be especially useful for those students without previous MATLAB programming experience. It is also valuable for classroom instructors to help pinpoint the author's intent in each exercise and to provide a model for graders. Upon completion of this material, students will have a working knowledge of MATLAB programming, they will have themselves programmed algorithms encountered in classwork and textbooks, and they will know how to check and verify their own programs against hand calculations and by reference to theoretical results, special polynomial solutions and other specialized solutions. No previous programming experience with MATLAB is necessary.
Think you can't have fun learning statistics? Think again. "The Manga Guide to Statistics" will teach you everything you need to know about this essential discipline, while entertaining you at the same time. With its unique combination of Japanese-style comics called manga and serious educational content, the EduManga format is already a hit in Japan. In "The Manga Guide to Statistics," our heroine Rui is determined to learn about statistics to impress the dreamy Mr. Igarashi and begs her father for a tutor. Soon she's spending her Saturdays with geeky, bespectacled Mr. Yamamoto, who patiently teaches her all about the fundamentals of statistics: topics like data categorization, averages, graphing, and standard deviation. After all her studying, Rui is confident in her knowledge of statistics, including complex concepts like probability, coefficients of correlation, hypothesis tests, and tests of independence. But is it enough to impress her dream guy? Or maybe there's someone better, right in front of her? Reluctant statistics students of all ages will enjoy learning along with Rui in this charming, easy-to-read guide, which uses real-world examples like teen magazine quizzes, bowling games, test scores, and ramen noodle prices. Examples, exercises, and answer keys help you follow along and check your work. An appendix showing how to perform statistics calculations in Microsoft Excel makes it easy to put Rui's lessons into practice. This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.
Build a strong foundation in SAS data warehousing by understanding data transformation code and policy, data stewardship and management, interconnectivity between SAS and other warehousing products, and print and web reporting Key Features Understand how to use SAS macros for standardizing extract, transform, and load (ETL) protocols Develop and use data curation files for effective warehouse management Learn how to develop and manage ETL, policies, and print and web reports that meet user needs Book DescriptionSAS is used for various functions in the development and maintenance of data warehouses, thanks to its reputation of being able to handle 'big data'. This book will help you learn the pros and cons of storing data in SAS. As you progress, you'll understand how to document and design extract-transform-load (ETL) protocols for SAS processes. Later, you'll focus on how the use of SAS arrays and macros can help standardize ETL. The book will also help you examine approaches for serving up data using SAS and explore how connecting SAS to other systems can enhance the data warehouse user's experience. By the end of this data management book, you will have a fundamental understanding of the roles SAS can play in a warehouse environment, and be able to choose wisely when designing your data warehousing processes involving SAS. What you will learn Develop efficient ways to manage data input/output (I/O) in SAS Create and manage extract, transform, and load (ETL) code in SAS Standardize ETL through macro variables, macros, and arrays Identify data warehouse users and ensure their needs are met Design crosswalk and other variables to serve analyst needs Maintain data curation files to improve communication and management Use the output delivery system (ODS) for print and web reporting Connect other products to SAS to optimize storage and reporting Who this book is forThis book is for data architects, managers leading data projects, and programmers or developers using SAS who want to effectively maintain a data lake, data mart, or data warehouse.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.
With an exciting new look, new characters to meet, and its unique combination of humour and step-by-step instruction, this award-winning book is the statistics lifesaver for everyone. From initial theory through to regression, factor analysis and multilevel modelling, Andy Field animates statistics and SPSS software with his famously bizarre examples and activities. What's brand new: A radical new design with original illustrations and even more colour A maths diagnostic tool to help students establish what areas they need to revise and improve on. A revamped online resource that uses video, case studies, datasets, testbanks and more to help students negotiate project work, master data management techniques, and apply key writing and employability skills New sections on replication, open science and Bayesian thinking Now fully up to date with latest versions of IBM SPSS Statistics (c). All the online resources above (video, case studies, datasets, testbanks) can be easily integrated into your institution's virtual learning environment or learning management system. This allows you to customize and curate content for use in module preparation, delivery and assessment. Please note that ISBN: 9781526445780 comprises the paperback edition of the Fifth Edition and the student version of IBM SPSS Statistics.
Discover how to build and backtest algorithmic trading strategies with Zipline Key Features Get to grips with market data and stock analysis and visualize data to gain quality insights Find out how to systematically approach quantitative research and strategy generation/backtesting in algorithmic trading Learn how to navigate the different features in Python's data analysis libraries Book DescriptionAlgorithmic trading helps you stay ahead of the markets by devising strategies in quantitative analysis to gain profits and cut losses. The book starts by introducing you to algorithmic trading and explaining why Python is the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. You'll also focus on time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization. What you will learn Discover how quantitative analysis works by covering financial statistics and ARIMA Use core Python libraries to perform quantitative research and strategy development using real datasets Understand how to access financial and economic data in Python Implement effective data visualization with Matplotlib Apply scientific computing and data visualization with popular Python libraries Build and deploy backtesting algorithmic trading strategies Who this book is forThis book is for data analysts and financial traders who want to explore how to design algorithmic trading strategies using Python's core libraries. If you are looking for a practical guide to backtesting algorithmic trading strategies and building your own strategies, then this book is for you. Beginner-level working knowledge of Python programming and statistics will be helpful.
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an "Introduction to Data Science" course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains "War Stories," offering perspectives on how data science applies in the real world Includes "Homework Problems," providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides "Take-Home Lessons," emphasizing the big-picture concepts to learn from each chapter Recommends exciting "Kaggle Challenges" from the online platform Kaggle Highlights "False Starts," revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show "The Quant Shop" (www.quant-shop.com)
Leverage the full potential of SAS to get unique, actionable insights from your data Key Features Build enterprise-class data solutions using SAS and become well-versed in SAS programming Work with different data structures, and run SQL queries to manipulate your data Explore essential concepts and techniques with practical examples to confidently pass the SAS certification exam Book DescriptionSAS is one of the leading enterprise tools in the world today when it comes to data management and analysis. It enables the fast and easy processing of data and helps you gain valuable business insights for effective decision-making. This book will serve as a comprehensive guide that will prepare you for the SAS certification exam. After a quick overview of the SAS architecture and components, the book will take you through the different approaches to importing and reading data from different sources using SAS. You will then cover SAS Base and 4GL, understanding data management and analysis, along with exploring SAS functions for data manipulation and transformation. Next, you'll discover SQL procedures and get up to speed on creating and validating queries. In the concluding chapters, you'll learn all about data visualization, right from creating bar charts and sample geographic maps through to assigning patterns and formats. In addition to this, the book will focus on macro programming and its advanced aspects. By the end of this book, you will be well versed in SAS programming and have the skills you need to easily handle and manage your data-related problems in SAS. What you will learn Explore a variety of SAS modules and packages for efficient data analysis Use SAS 4GL functions to manipulate, merge, sort, and transform data Gain useful insights into advanced PROC SQL options in SAS to interact with data Get to grips with SAS Macro and define your own macros to share data Discover the different graphical libraries to shape and visualize data with Apply the SAS Output Delivery System to prepare detailed reports Who this book is forBudding or experienced data professionals who want to get started with SAS will benefit from this book. Those looking to prepare for the SAS certification exam will also find this book to be a useful resource. Some understanding of basic data management concepts will help you get the most out of this book.
Das sachliche Hauptziel der Wahrscheinlichkeitsrechnung ist die mathematische Erforschung von Massenerscheinungen. In formaler Hin sicht bedeutet das einen erkenntnistheoretisch genugend scharf ab gegrenzten Problemkreis: diejenigen Gesetzmassigkeiten der Erscheinun gen und Vorgange theoretisch zu erfassen, die durch das Massenhafte an ihnen (d. h. durch das Auftreten einer grossen Anzahl von in gewissem Sinne gleichberechtigten Ereignissen, Grossen u. dgl. m. ) in ihren Haupt zugen bedingt sind, so dass daneben die individuelle Beschaffenheit der einzelnen Ingredienten gewissermassen in den Hintergrund tritt. Rein mathematisch fuhrt das endlich zu Infinitesimalbetrachtungen einer spezifischen Gattung, indem die fur eine unendlich grosse Ingredienten anzahl geltenden Grenzgesetze systematisch untersucht und begrundet werden. In diesem Zusammenhang erscheinen die unter dem Namen von "Grenzwertsatzen" bekannten asymptotischen Gesetze der Wahr scheinlichkeitsrechnung keinesfalls als ein isoliertes Nebenstuck dieser Wissenschaft, sondern sie bilden im Gegenteil den wesentlichsten Teil ihrer Problematik. Diese "asymptotische" Wahrscheinlichkeitsrechnung ist als mathe matische Wissenschaft noch ziemlich weit davon entfernt, ein einheit liches Ganzes zu bilden. Vor wenigen Jahren zahlte sie zu ihren Ergeb nissen nur ein paar ganz abgesondert stehender, durch keinen allgemeinen Standpunkt vereinigter Grenzwertsatze. Nur in der allerletzten Zeit konnte sie gewisse neue Aussichtspunkte erringen, die die Hoffnung erwecken, fur dieses theoretisch grundlegende und auch fur die Natur wissenschaften ausserst wichtige Forschungsgebiet in absehbarer Zeit eine einheitliche Theorie zu gewinnen. Es mussen hier einerseits die aus der physikalischen Statistik kommenden, mit der sog." |
![]() ![]() You may like...
Handbook of Polymernanocomposites…
Jitendra K. Pandey, Kummetha Raghunatha Reddy, …
Hardcover
High-Performance Computing Using FPGAs
Wim Vanderbauwhede, Khaled Benkrid
Hardcover
R7,226
Discovery Miles 72 260
Bio-inspired Algorithms for Data…
Simon James Fong, Richard C. Millham
Hardcover
R4,924
Discovery Miles 49 240
Integrated Optical Interconnect…
Ian O'Connor, Gabriela Nicolescu
Hardcover
Theoretical Computer Science - 6th IFIP…
Christian S. Calude, Vladimiro Sassone
Hardcover
R1,582
Discovery Miles 15 820
Automated Design of Machine Learning and…
Nelishia Pillay, Rong Qu
Hardcover
R4,235
Discovery Miles 42 350
|