![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for anyalsis provide consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirement for a clear exposition of the methodology through to application for a range of environmental challenges.
An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks - with full solutions - are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered
This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
The second edition of this popular guide demonstrates the process of entering and analyzing data using the latest version of SPSS (12.0), and is also appropriate for those using earlier versions of SPSS. The book is easy to follow because all procedures are outlined in a step-by-step format designed for the novice user. Students are introduced to the rationale of statistical tests and detailed explanations of results are given through clearly annotated examples of SPSS output. Topics covered range from descriptive statistics through multiple regression analysis. In addition, this guide includes topics not typically covered in other books such as probability theory, interaction effects in analysis of variance, factor analysis, and scale reliability. Chapter exercises reinforce the text examples and may be performed for further practice, for homework assignments, or in computer laboratory sessions. This book can be used in two ways: as a stand-alone manual for students wishing to learn data analysis techniques using SPSS for Windows, or in research and statistics courses to be used with a basic statistics text. The book provides hands-on experience with actual data sets, helps students choose appropriate statistical tests, illustrates the meaning of results, and provides exercises to be completed for further practice or as homework assignments. Susan B. Gerber, Ph.D. is Research Assistant Professor of Education at State University of New York at Buffalo. She is director of the Educational Technology program and holds degrees in Statistics and Educational Psychology. Kristin Voelkl Finn, Ph.D. is Assistant Professor of Education at Canisius College. She teaches graduate courses in research methodology and conducts research on adolescent problem behavior.
A self-contained introduction to abstract interpretation-based static analysis, an essential resource for students, developers, and users. Static program analysis, or static analysis, aims to discover semantic properties of programs without running them. It plays an important role in all phases of development, including verification of specifications and programs, the synthesis of optimized code, and the refactoring and maintenance of software applications. This book offers a self-contained introduction to static analysis, covering the basics of both theoretical foundations and practical considerations in the use of static analysis tools. By offering a quick and comprehensive introduction for nonspecialists, the book fills a notable gap in the literature, which until now has consisted largely of scientific articles on advanced topics. The text covers the mathematical foundations of static analysis, including semantics, semantic abstraction, and computation of program invariants; more advanced notions and techniques, including techniques for enhancing the cost-accuracy balance of analysis and abstractions for advanced programming features and answering a wide range of semantic questions; and techniques for implementing and using static analysis tools. It begins with background information and an intuitive and informal introduction to the main static analysis principles and techniques. It then formalizes the scientific foundations of program analysis techniques, considers practical aspects of implementation, and presents more advanced applications. The book can be used as a textbook in advanced undergraduate and graduate courses in static analysis and program verification, and as a reference for users, developers, and experts.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards.
This book brings together some of the finest minds in the statistical and neural network research communities. It provides a broad overview of important current developments and highlights the likely future trends in the area of neural networks.
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Biological systems are extremely complex and have emergent properties that cannot be explained or even predicted by studying their individual parts in isolation. The reductionist approach, although successful in the early days of molecular biology, underestimates this complexity. As the amount of available data grows, so it will become increasingly important to be able to analyse and integrate these large data sets. This book introduces novel approaches and solutions to the Big Data problem in biomedicine, and presents new techniques in the field of graph theory for handling and processing multi-type large data sets. By discussing cutting-edge problems and techniques, researchers from a wide range of fields will be able to gain insights for exploiting big heterogonous data in the life sciences through the concept of 'network of networks'.
Mathematica (R) in the Laboratory is a hands-on guide which shows how to harness the power and flexibility of Mathematica in the control of data-acquisition equipment and the analysis of experimental data. It explains how to use Mathematica to import, manipulate, visualise and analyse data from existing files. The generation and export of test data are also covered. The control of laboratory equipment is dealt with in detail, including the use of Mathematica's MathLink (R) system in instrument control, data processing, and interfacing. Many practical examples are given, which can either be used directly or adapted to suit a particular application. The book sets out clearly how Mathematica can provide a truly unified data-handling environment, and will be invaluable to anyone who collects or analyses experimental data, including astronomers, biologists, chemists, mathematicians, geologists, physicists and engineers. The book is fully compatible with Mathematica 3.0.
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.
With over a million users around the world, the Mathematica software system created by Stephen Wolfram has defined the direction of technical computing for the past decade. The enhanced text and hypertext processing and state-of-the-art numerical computation features ensure that Mathematica 4 takes scientific computing into the next century. New to this version: visual tour of key features, practical tutorial introduction, full descriptions of 1100 built-in functions, a thousand illustrative examples, easy-to-follow descriptive tables, essays highlighting key concepts, examples of data import and export, award-winning gallery of Mathematica graphics, gallery of mathematical typesetting, dictionary of 700 special characters, a complete guide to the MathLink API, notes on internal implementation, and an index with over 10,000 entries copublished with Wolfram Media.
Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: * Original case studies and data sets * Practical exercises and lists of commands for each chapter * Downloadable Stata programmes created to work alongside chapters * A wide range of detailed applications using Stata * Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.
System Assurances: Modeling and Management updates on system assurance and performance methods using advanced analytics and understanding of software reliability growth modeling from today's debugging team's point-of-view, along with information on preventive and predictive maintenance and the efficient use of testing resources. The book presents the rapidly growing application areas of systems and software modeling, including intelligent synthetic characters, human-machine interface, menu generators, user acceptance analysis, picture archiving and software systems. Students, research scholars, academicians, scientists and industry practitioners will benefit from the book as it provides better insights into modern related global trends, issues and practices.
Previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB (R) Approach, Fourth Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes a new chapter on Dynamical Systems and Chaos. Features Covers the most common numerical methods encountered in science and engineering Illustrates the methods using MATLAB Presents numerous examples and exercises, with selected answers at the back of the book
The interaction between computers and mathematics is becoming more and more important at all levels as computers become more sophisticated. This book shows how simple programs can be used to do significant mathematics. The purpose of this book is to give those with some mathematical background a wealth of material with which to appreciate both the power of the microcomputer and its relevance to the study of mathematics. The authors cover topics such as number theory, approximate solutions, differential equations and iterative processes, with each chapter self contained. Many exercises and projects are included giving ready-made material for demonstrating mathematical ideas. Only fundamental knowledge of mathematics is assumed and programming is restricted to "basic BASIC" which will be understood by any microcomputer. The book may be used as a textbook for algorithmic mathematics at several levels, since all the topics covered appear in any undergraduate mathematics course.
If you want to learn to use R for data analysis but aren't sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors' own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Need to Learn MATLAB? Problem SOLVED! Get started using MATLAB right away with help from this hands-on guide. MATLAB Demystified offers an effective and enlightening method for learning how to get the most out this powerful computational mathematics tool. Using an easy-to-follow format, this book explains the basics of MATLAB up front. You'll find out how to plot functions, solve algebraic equations, and compute integrals. You'll also learn how to solve differential equations, generate numerical solutions of ODEs, and work with special functions. Packed with hundreds of sample equations and explained solutions, and featuring end-of-chapter quizzes and a final exam, this book will teach you MATLAB essentials in no time at all. This self-teaching guide offers: The quickest way to get up and running on MATLAB Hundreds of worked examples with solutions Coverage of MATLAB 7 A quiz at the end of each chapter to reinforce learning and pinpoint weaknesses A final exam at the end of the book A time-saving approach to performing better on homework or on the job Simple enough for a beginner, but challenging enough for an advanced user, MATLAB Demystified is your shortcut to computational precision.
To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics. Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.
This innovative approach to teaching the finite element method blends theoretical, textbook-based learning with practical application using online and video resources. This hybrid teaching package features computational software such as MATLAB (R), and tutorials presenting software applications such as PTC Creo Parametric, ANSYS APDL, ANSYS Workbench and SolidWorks, complete with detailed annotations and instructions so students can confidently develop hands-on experience. Suitable for senior undergraduate and graduate level classes, students will transition seamlessly between mathematical models and practical commercial software problems, empowering them to advance from basic differential equations to industry-standard modelling and analysis. Complete with over 120 end-of chapter problems and over 200 illustrations, this accessible reference will equip students with the tools they need to succeed in the workplace.
An authoritative introduction to the latest comparative methods in evolutionary biology Phylogenetic comparative methods are a suite of statistical approaches that enable biologists to analyze and better understand the evolutionary tree of life, and shed vital new light on patterns of divergence and common ancestry among all species on Earth. This textbook shows how to carry out phylogenetic comparative analyses in the R statistical computing environment. Liam Revell and Luke Harmon provide an incisive conceptual overview of each method along with worked examples using real data and challenge problems that encourage students to learn by doing. By working through this book, students will gain a solid foundation in these methods and develop the skills they need to interpret patterns in the tree of life. Covers every major method of modern phylogenetic comparative analysis in R Explains the basics of R and discusses topics such as trait evolution, diversification, trait-dependent diversification, biogeography, and visualization Features a wealth of exercises and challenge problems Serves as an invaluable resource for students and researchers, with applications in ecology, evolution, anthropology, disease transmission, conservation biology, and a host of other areas Written by two of today's leading developers of phylogenetic comparative methods
"Mathematica Cookbook" helps you master the application's core principles by walking you through real-world problems. Ideal for browsing, this book includes recipes for working with numerics, data structures, algebraic equations, calculus, and statistics. You'll also venture into exotic territory with recipes for data visualization using 2D and 3D graphic tools, image processing, and music. Although Mathematica 7 is a highly advanced computational platform, the recipes in this book make it accessible to everyone -- whether you're working on high school algebra, simple graphs, PhD-level computation, financial analysis, or advanced engineering models.Learn how to use Mathematica at a higher level with functional programming and pattern matchingDelve into the rich library of functions for string and structured text manipulationLearn how to apply the tools to physics and engineering problemsDraw on Mathematica's access to physics, chemistry, and biology dataGet techniques for solving equations in computational financeLearn how to use Mathematica for sophisticated image processingProcess music and audio as musical notes, analog waveforms, or digital sound samples
Im Mittelpunkt dieses essentials steht eine Einfuhrung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.Damit koennen Probleme bewaltigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.Die Anwendungen des Hidden-Markov-Modells liegen hauptsachlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.In diesem Buchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem beruhmten Viterbi-Algorithmus geloest, und das Problem der Parameterschatzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).
With the development of computing technologies in today's modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines. |
![]() ![]() You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,341
Discovery Miles 13 410
Time-dependent Problems in Imaging and…
Barbara Kaltenbacher, Thomas Schuster, …
Hardcover
R4,265
Discovery Miles 42 650
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,654
Discovery Miles 16 540
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,400
Discovery Miles 124 000
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,623
Discovery Miles 16 230
|