0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (8)
  • R250 - R500 (28)
  • R500+ (1,386)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide (Paperback, 1st ed. 2023): Eva Bartz, Thomas... Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide (Paperback, 1st ed. 2023)
Eva Bartz, Thomas Bartz-beielstein, Martin Zaefferer, Olaf Mersmann
R1,308 Discovery Miles 13 080 Ships in 18 - 22 working days

This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.

Basics of Matlab (Paperback): Andrew Knight Basics of Matlab (Paperback)
Andrew Knight
R2,791 Discovery Miles 27 910 Ships in 10 - 15 working days

MATLABä-the tremendously popular computation, numerical analysis, signal processing, data analysis, and graphical software package-allows virtually every scientist and engineer to make better and faster progress. As MATLAB's world-wide sales approach a half-million with an estimated four million users, it becomes a near necessity that professionals and students have a level of competence in its use. Until now, however, there has been no book that quickly and effectively introduces MATLAB's capabilities to new users and assists those with more experience down the path toward increasingly sophisticated work.
Basics of MATLAB and Beyond is just such a book. Its hands-on, tutorial approach gently takes new users by the hand and leads them to competence in all the fundamentals of MATLAB. Then, with equal effectiveness, it covers the advanced topics that lead to full, creative exploitation of MATLAB's awesome power. With this book, readers will:
· Solve more problems with MATLAB-and solve them faster
· Create clearer, more beautiful graphics with control over every detail
· Create their own MATLAB code
· Share their work by exporting data and graphics to other applications
· Develop graphical user interfaces
Based on the latest 5.x release, Basics of MATLAB and Beyond supplies both novice and experienced users the tools they need to gain proficiency, increase productivity, and ultimately have more fun with MATLAB.

Research Methods and Data Analysis for Business Decisions - A Primer Using SPSS (Paperback, 1st ed. 2021): James E. Sallis,... Research Methods and Data Analysis for Business Decisions - A Primer Using SPSS (Paperback, 1st ed. 2021)
James E. Sallis, Geir Gripsrud, Ulf Henning Olsson, Ragnhild Silkoset
R1,968 Discovery Miles 19 680 Ships in 18 - 22 working days

This introductory textbook presents research methods and data analysis tools in non-technical language. It explains the research process and the basics of qualitative and quantitative data analysis, including procedures and methods, analysis, interpretation, and applications using hands-on data examples in QDA Miner Lite and IBM SPSS Statistics software. The book is divided into four parts that address study and research design; data collection, qualitative methods and surveys; statistical methods, including hypothesis testing, regression, cluster and factor analysis; and reporting. The intended audience is business and social science students learning scientific research methods, however, given its business context, the book will be equally useful for decision-makers in businesses and organizations.

Multivariate Statistical Methods - Going Beyond the Linear (Paperback, 1st ed. 2021): Gyoergy Terdik Multivariate Statistical Methods - Going Beyond the Linear (Paperback, 1st ed. 2021)
Gyoergy Terdik
R2,916 Discovery Miles 29 160 Ships in 18 - 22 working days

This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.

Applied Linear Models with SAS (Hardcover): Daniel Zelterman Applied Linear Models with SAS (Hardcover)
Daniel Zelterman
R2,020 Discovery Miles 20 200 Ships in 10 - 15 working days

This textbook for a second course in basic statistics for undergraduates or first-year graduate students introduces linear regression models and describes other linear models including Poisson regression, logistic regression, proportional hazards regression, and nonparametric regression. Numerous examples drawn from the news and current events with an emphasis on health issues illustrate these concepts. Assuming only a pre-calculus background, the author keeps equations to a minimum and demonstrates all computations using SAS. Most of the programs and output are displayed in a self-contained way, with an emphasis on the interpretation of the output in terms of how it relates to the motivating example. Plenty of exercises conclude every chapter. All of the datasets and SAS programs are available from the book s Web site, along with other ancillary material.

Data Analysis and Graphics Using R - An Example-Based Approach (Hardcover, 3rd Revised edition): John Maindonald, W. John Braun Data Analysis and Graphics Using R - An Example-Based Approach (Hardcover, 3rd Revised edition)
John Maindonald, W. John Braun
R2,744 Discovery Miles 27 440 Ships in 10 - 15 working days

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.

Topological Methods in Data Analysis and Visualization VI - Theory, Applications, and Software (Paperback, 1st ed. 2021):... Topological Methods in Data Analysis and Visualization VI - Theory, Applications, and Software (Paperback, 1st ed. 2021)
Ingrid Hotz, Talha Bin Masood, Filip Sadlo, Julien Tierny
R4,716 Discovery Miles 47 160 Ships in 18 - 22 working days

This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.

The Signed Distance Measure in Fuzzy Statistical Analysis - Theoretical, Empirical and Programming Advances (Paperback, 1st ed.... The Signed Distance Measure in Fuzzy Statistical Analysis - Theoretical, Empirical and Programming Advances (Paperback, 1st ed. 2021)
Redina Berkachy
R3,353 Discovery Miles 33 530 Ships in 18 - 22 working days

The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.

Stochastic Systems with Time Delay - Probabilistic and Thermodynamic Descriptions of non-Markovian Processes far From... Stochastic Systems with Time Delay - Probabilistic and Thermodynamic Descriptions of non-Markovian Processes far From Equilibrium (Paperback, 1st ed. 2021)
Sarah A.M. Loos
R4,241 Discovery Miles 42 410 Ships in 18 - 22 working days

The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.

Statistics with Julia - Fundamentals for Data Science, Machine Learning and Artificial Intelligence (Paperback, 1st ed. 2021):... Statistics with Julia - Fundamentals for Data Science, Machine Learning and Artificial Intelligence (Paperback, 1st ed. 2021)
Yoni Nazarathy, Hayden Klok
R4,847 Discovery Miles 48 470 Ships in 18 - 22 working days

This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book's associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With "Statistics with Julia", Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.

Computationally Intensive Statistics for Intelligent IoT (Paperback, 1st ed. 2021): Debabrata Samanta, Amit Banerjee Computationally Intensive Statistics for Intelligent IoT (Paperback, 1st ed. 2021)
Debabrata Samanta, Amit Banerjee
R3,997 Discovery Miles 39 970 Ships in 18 - 22 working days

The book covers computational statistics, its methodologies and applications for IoT device. It includes the details in the areas of computational arithmetic and its influence on computational statistics, numerical algorithms in statistical application software, basics of computer systems, statistical techniques, linear algebra and its role in optimization techniques, evolution of optimization techniques, optimal utilization of computer resources, and statistical graphics role in data analysis. It also explores computational inferencing and computer model's role in design of experiments, Bayesian analysis, survival analysis and data mining in computational statistics.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover): Elias Krainski, Virgilio... Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover)
Elias Krainski, Virgilio Gomez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, …
R3,656 Discovery Miles 36 560 Ships in 10 - 15 working days

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matern covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Data Science for Public Policy (Paperback, 1st ed. 2021): Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall Data Science for Public Policy (Paperback, 1st ed. 2021)
Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
R1,495 Discovery Miles 14 950 Ships in 18 - 22 working days

This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst's time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.

Time Series Analysis for the State-Space Model with R/Stan (Paperback, 1st ed. 2021): Junichiro Hagiwara Time Series Analysis for the State-Space Model with R/Stan (Paperback, 1st ed. 2021)
Junichiro Hagiwara
R4,030 Discovery Miles 40 300 Ships in 18 - 22 working days

This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.

Methods for the Analysis of Asymmetric Proximity Data (Paperback, 1st ed. 2021): Giuseppe Bove, Akinori Okada, Donatella Vicari Methods for the Analysis of Asymmetric Proximity Data (Paperback, 1st ed. 2021)
Giuseppe Bove, Akinori Okada, Donatella Vicari
R3,987 Discovery Miles 39 870 Ships in 18 - 22 working days

This book provides an accessible introduction and practical guidelines to apply asymmetric multidimensional scaling, cluster analysis, and related methods to asymmetric one-mode two-way and three-way asymmetric data. A major objective of this book is to present to applied researchers a set of methods and algorithms for graphical representation and clustering of asymmetric relationships. Data frequently concern measurements of asymmetric relationships between pairs of objects from a given set (e.g., subjects, variables, attributes,...), collected in one or more matrices. Examples abound in many different fields such as psychology, sociology, marketing research, and linguistics and more recently several applications have appeared in technological areas including cybernetics, air traffic control, robotics, and network analysis. The capabilities of the presented algorithms are illustrated by carefully chosen examples and supported by extensive data analyses. A review of the specialized statistical software available for the applications is also provided. This monograph is highly recommended to readers who need a complete and up-to-date reference on methods for asymmetric proximity data analysis.

An Introduction to Bayesian Inference, Methods and Computation (Paperback, 1st ed. 2021): Nick Heard An Introduction to Bayesian Inference, Methods and Computation (Paperback, 1st ed. 2021)
Nick Heard
R1,944 Discovery Miles 19 440 Ships in 18 - 22 working days

These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.

Numerical Methods and Scientific Computing - Using Software Libraries for Problem Solving (Hardcover): Norbert Koeckler Numerical Methods and Scientific Computing - Using Software Libraries for Problem Solving (Hardcover)
Norbert Koeckler
R988 Discovery Miles 9 880 Ships in 10 - 15 working days

This book covers the whole range of numerical mathematics--from linear equations to ordinary differential equations--and details the calculus of errors and partial differential equations. In attempting to give a unified approach of theory, algorithms, applications, and use of software, the book contains many helpful examples and applications. Topics include linear optimization, numerical integration, initial value problems, and nonlinear equations. The book is appearing simultaneously with the problem-solving environment PAN, a system that contains an enlarged hypertext version of the text together with all of the programs described in the book, help systems, and utility tools. (PAN is licensed public domain software.) The text is ideally suited as an introduction to numerical methods and programming for undergraduates in computer science, engineering, and mathematics. It will also be useful to software engineers using NAG libraries and numerical algorithms.

Agent-Based Modelling of Worker Exploitation - Slave from the Machine (Paperback, 1st ed. 2021): Thomas Chesney Agent-Based Modelling of Worker Exploitation - Slave from the Machine (Paperback, 1st ed. 2021)
Thomas Chesney
R3,078 Discovery Miles 30 780 Ships in 18 - 22 working days

This book illustrates the potential for computer simulation in the study of modern slavery and worker abuse, and by extension in all social issues. It lays out a philosophy of how agent-based modelling can be used in the social sciences. In addressing modern slavery, Chesney considers precarious work that is vulnerable to abuse, like sweat-shop labour and prostitution, and shows how agent modelling can be used to study, understand and fight abuse in these areas. He explores the philosophy, application and practice of agent modelling through the popular and free software NetLogo. This topical book is grounded in the technology needed to address the messy, chaotic, real world problems that humanity faces-in this case the serious problem of abuse at work-but equally in the social sciences which are needed to avoid the unintended consequences inherent to human responses. It includes a short but extensive NetLogo guide which readers can use to quickly learn this software and go on to develop complex models. This is an important book for students and researchers of computational social science and others interested in agent-based modelling.

GenstatTM 5 Release 3 Reference Manual (Paperback): Genstat 5 Committee GenstatTM 5 Release 3 Reference Manual (Paperback)
Genstat 5 Committee; Edited by (consulting) R. W. Payne
R5,190 Discovery Miles 51 900 Ships in 10 - 15 working days

Genstat 5 Release 3 is a version of the statistical system developed by practising statisticians at Rothamsted Experimental Station. It provides statistical summary, analysis, data-handling, and graphics for interactive or batch users, and includes a customizable menu-based interface. Genstat is used worldwide on personal computers, workstations, and mainframe computers by statisticians, research workers, and students in all fields of application of statistics. Release 3 contains many new facilities: the analysis of ordered categorical data: generalized additive models; combination of information in multi-stratum experimental designs; extensions to the REML (residual maximum-likelihood) algorithm for testing fixed effects and to cater for correlation strucgures between random effects; estimation of paramenters of statistical distributions; further probability functions; simplified data input; and many more extensions, in high-resolution graphics, for calculations, and for manipulation. The manual has been rewritten for this release, including new chapters on Basic Statistics and REML, with extensive examples and illustrations. The text is suitable for users of Genstat 5 i.e. statis

Data Science Techniques for Cryptocurrency Blockchains (Paperback, 1st ed. 2021): Innar Liiv Data Science Techniques for Cryptocurrency Blockchains (Paperback, 1st ed. 2021)
Innar Liiv
R3,287 Discovery Miles 32 870 Ships in 18 - 22 working days

This book brings together two major trends: data science and blockchains. It is one of the first books to systematically cover the analytics aspects of blockchains, with the goal of linking traditional data mining research communities with novel data sources. Data science and big data technologies can be considered cornerstones of the data-driven digital transformation of organizations and society. The concept of blockchain is predicted to enable and spark transformation on par with that associated with the invention of the Internet. Cryptocurrencies are the first successful use case of highly distributed blockchains, like the world wide web was to the Internet. The book takes the reader through basic data exploration topics, proceeding systematically, method by method, through supervised and unsupervised learning approaches and information visualization techniques, all the way to understanding the blockchain data from the network science perspective. Chapters introduce the cryptocurrency blockchain data model and methods to explore it using structured query language, association rules, clustering, classification, visualization, and network science. Each chapter introduces basic concepts, presents examples with real cryptocurrency blockchain data and offers exercises and questions for further discussion. Such an approach intends to serve as a good starting point for undergraduate and graduate students to learn data science topics using cryptocurrency blockchain examples. It is also aimed at researchers and analysts who already possess good analytical and data skills, but who do not yet have the specific knowledge to tackle analytic questions about blockchain transactions. The readers improve their knowledge about the essential data science techniques in order to turn mere transactional information into social, economic, and business insights.

Statistical Analysis of Network Data with R (Paperback, 2nd ed. 2020): Eric D. Kolaczyk, Gabor Csardi Statistical Analysis of Network Data with R (Paperback, 2nd ed. 2020)
Eric D. Kolaczyk, Gabor Csardi
R1,925 R1,808 Discovery Miles 18 080 Save R117 (6%) Ships in 9 - 17 working days

The new edition of this book provides an easily accessible introduction to the statistical analysis of network data using R. It has been fully revised and can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. The new edition of this book includes an overhaul to recent changes in igraph. The material in this book is organized to flow from descriptive statistical methods to topics centered on modeling and inference with networks, with the latter separated into two sub-areas, corresponding first to the modeling and inference of networks themselves, and then, to processes on networks. The book begins by covering tools for the manipulation of network data. Next, it addresses visualization and characterization of networks. The book then examines mathematical and statistical network modeling. This is followed by a special case of network modeling wherein the network topology must be inferred. Network processes, both static and dynamic are addressed in the subsequent chapters. The book concludes by featuring chapters on network flows, dynamic networks, and networked experiments. Statistical Analysis of Network Data with R, 2nd Ed. has been written at a level aimed at graduate students and researchers in quantitative disciplines engaged in the statistical analysis of network data, although advanced undergraduates already comfortable with R should find the book fairly accessible as well.

Frontiers in Statistical Quality Control 13 (Paperback, 1st ed. 2021): Sven Knoth, Wolfgang Schmid Frontiers in Statistical Quality Control 13 (Paperback, 1st ed. 2021)
Sven Knoth, Wolfgang Schmid
R5,178 Discovery Miles 51 780 Ships in 18 - 22 working days

This contributed book focuses on major aspects of statistical quality control, shares insights into important new developments in the field, and adapts established statistical quality control methods for use in e.g. big data, network analysis and medical applications. The content is divided into two parts, the first of which mainly addresses statistical process control, also known as statistical process monitoring. In turn, the second part explores selected topics in statistical quality control, including measurement uncertainty analysis and data quality. The peer-reviewed contributions gathered here were originally presented at the 13th International Workshop on Intelligent Statistical Quality Control, ISQC 2019, held in Hong Kong on August 12-14, 2019. Taken together, they bridge the gap between theory and practice, making the book of interest to both practitioners and researchers in the field of statistical quality control.

Kernel Methods for Machine Learning with Math and Python - 100 Exercises for Building Logic (Paperback, 1st ed. 2022): Joe... Kernel Methods for Machine Learning with Math and Python - 100 Exercises for Building Logic (Paperback, 1st ed. 2022)
Joe Suzuki
R1,274 Discovery Miles 12 740 Ships in 18 - 22 working days

The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book's main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.

Advanced Sampling Methods (Paperback, 1st ed. 2021): Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra Advanced Sampling Methods (Paperback, 1st ed. 2021)
Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra
R1,641 Discovery Miles 16 410 Ships in 18 - 22 working days

This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.

Graphing Data with R (Paperback): John Jay Hilfiger Graphing Data with R (Paperback)
John Jay Hilfiger
R893 R772 Discovery Miles 7 720 Save R121 (14%) Ships in 18 - 22 working days

It's much easier to grasp complex data relationships with a graph than by scanning numbers in a spreadsheet. This introductory guide shows you how to use the R language to create a variety of useful graphs for visualizing and analyzing complex data for science, business, media, and many other fields. You'll learn methods for highlighting important relationships and trends, reducing data to simpler forms, and emphasizing key numbers at a glance. Anyone who wants to analyze data will find something useful here-even if you don't have a background in mathematics, statistics, or computer programming. If you want to examine data related to your work, this book is the ideal way to start. Get started with R by learning basic commands Build single variable graphs, such as dot and pie charts, box plots, and histograms Explore the relationship between two quantitative variables with scatter plots, high-density plots, and other techniques Use scatterplot matrices, 3D plots, clustering, heat maps, and other graphs to visualize relationships among three or more variables

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R11,427 Discovery Miles 114 270
SAS Certified Specialist Prep Guide…
Sas Institute Hardcover R3,109 Discovery Miles 31 090
Entity-Oriented Search
Krisztian Balog Hardcover R1,549 Discovery Miles 15 490
An Introduction to Creating Standardized…
Todd Case, Yuting Tian Hardcover R1,501 Discovery Miles 15 010
Proc SQL - Beyond the Basics Using SAS…
Kirk Paul Lafler Hardcover R1,918 Discovery Miles 19 180
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,651 Discovery Miles 16 510
Predictive Modeling with SAS Enterprise…
Kattamuri S Sarma Hardcover R2,338 Discovery Miles 23 380
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas Hardcover R1,530 Discovery Miles 15 300
Essential Java for Scientists and…
Brian Hahn, Katherine Malan Paperback R1,266 Discovery Miles 12 660
Linear Algebra with Mathematica - An…
Fred Szabo Paperback R2,049 Discovery Miles 20 490

 

Partners