0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (29)
  • R500+ (1,401)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

R for Programmers - Mastering the Tools (Paperback): Dan Zhang R for Programmers - Mastering the Tools (Paperback)
Dan Zhang
R1,881 Discovery Miles 18 810 Ships in 10 - 15 working days

Unlike other books about R, written from the perspective of statistics, R for Programmers: Mastering the Tools is written from the perspective of programmers, providing a channel for programmers with expertise in other programming languages to quickly understand R. The contents are divided into four sections: The first section consists of the basics of R, which explains the advantages of using R, the installation of different versions of R, and the 12 frequently used packages of R. This will help you understand the tool packages, time series packages, and performance monitoring packages of R quickly. The second section discusses the server of R, which examines the communication between R and other programming languages and the application of R as servers. This will help you integrate R with other programming languages and implement the server application of R. The third section discusses databases and big data, which covers the communication between R and various databases, as well as R's integration with Hadoop. This will help you integrate R with the underlying level of other databases and implement the processing of big data by R, based on Hadoop. The fourth section comprises the appendices, which introduce the installation of Java, various databases, and Hadoop. Because this is a reference book, there is no special sequence for reading all the chapters. You can choose the chapters in which you have an interest. If you are new to R, and you wish to master R comprehensively, simply follow the chapters in sequence.

Information and Communications Technologies in School Mathematics - IFIP TC3 / WG3.1 Working Conference on Secondary School... Information and Communications Technologies in School Mathematics - IFIP TC3 / WG3.1 Working Conference on Secondary School Mathematics in the World of Communication Technology: Learning, Teaching and the Curriculum, 26-31 October 1997, Grenoble, France (Hardcover, 1998 ed.)
David Tinsley, David B. Johnson
R2,821 Discovery Miles 28 210 Ships in 18 - 22 working days

The International Federation for Information Processing, IFIP, is a multinational federation of professional technical organisations concerned with information processing. IFIP is dedicated to improving communication and increased understanding among practitioners of all nations about the role information processing can play in all walks of life. This Working Conference, Secondary School Mathematics in the World of Communication Technologies: Learning, Teaching and the Curriculum, was organised by Working Group 3.1, Informatics in Secondary Education, ofiFIP Technical Committee for Education, TC3. This is the third conference on this theme organised by WG 3.1, the previous two were held in Varna, Bulgaria, 1977, and Sofia, Bulgaria, 1987-proceedings published by North-Holland Elsevier. The aim of the conference was to take a forward look at the issue of the relationships between mathematics and the new technologies of information and communication in the context of the increased availability of interactive and dynamic information processing tools. The main focus was on the mathematics education of students in the age range of about ll to 18 years and the following themes were addressed: * Curriculum: curriculum evolution; relationships with informatics; * Teachers: professional development; methodology and practice; * Learners: tools and techniques; concept development; research and theory; * Human and social issues: culture and policy; personal impact.

Environmental Systems Analysis with MATLAB (R) (Hardcover): Stefano Marsili-Libelli Environmental Systems Analysis with MATLAB (R) (Hardcover)
Stefano Marsili-Libelli
R5,531 Discovery Miles 55 310 Ships in 10 - 15 working days

Explore the inner workings of environmental processes using a mathematical approach. Environmental Systems Analysis with MATLAB (R) combines environmental science concepts and system theory with numerical techniques to provide a better understanding of how our environment works. The book focuses on building mathematical models of environmental systems, and using these models to analyze their behaviors. Designed with the environmental professional in mind, it offers a practical introduction to developing the skills required for managing environmental modeling and data handling. The book follows a logical sequence from the basic steps of model building and data analysis to implementing these concepts into working computer codes, and then on to assessing their results. It describes data processing (rarely considered in environmental analysis); outlines the tools needed to successfully analyze data and develop models, and moves on to real-world problems. The author illustrates in the first four chapters the methodological aspects of environmental systems analysis, and in subsequent chapters applies them to specific environmental concerns. The accompanying software bundle is freely downloadable from the book web site. It follows the chapters sequence and provides a hands-on experience, allowing the reader to reproduce the figures in the text and experiment by varying the problem setting. A basic MATLAB literacy is required to get the most out of the software. Ideal for coursework and self-study, this offering: Deals with the basic concepts of environmental modeling and identification, both from the mechanistic and the data-driven viewpoint Provides a unifying methodological approach to deal with specific aspects of environmental modeling: population dynamics, flow systems, and environmental microbiology Assesses the similarities and the differences of microbial processes in natural and man-made environments Analyzes several aquatic ecosystems' case studies Presents an application of an extended Streeter & Phelps (S&P) model Describes an ecological method to estimate the bioavailable nutrients in natural waters Considers a lagoon ecosystem from several viewpoints, including modeling and management, and more

Statistical Analysis of Questionnaires - A Unified Approach Based on R and Stata (Paperback): Francesco Bartolucci, Silvia... Statistical Analysis of Questionnaires - A Unified Approach Based on R and Stata (Paperback)
Francesco Bartolucci, Silvia Bacci, Michela Gnaldi
R1,423 Discovery Miles 14 230 Ships in 10 - 15 working days

Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata presents special statistical methods for analyzing data collected by questionnaires. The book takes an applied approach to testing and measurement tasks, mirroring the growing use of statistical methods and software in education, psychology, sociology, and other fields. It is suitable for graduate students in applied statistics and psychometrics and practitioners in education, health, and marketing. The book covers the foundations of classical test theory (CTT), test reliability, validity, and scaling as well as item response theory (IRT) fundamentals and IRT for dichotomous and polytomous items. The authors explore the latest IRT extensions, such as IRT models with covariates, multidimensional IRT models, IRT models for hierarchical and longitudinal data, and latent class IRT models. They also describe estimation methods and diagnostics, including graphical diagnostic tools, parametric and nonparametric tests, and differential item functioning. Stata and R software codes are included for each method. To enhance comprehension, the book employs real datasets in the examples and illustrates the software outputs in detail. The datasets are available on the authors' web page.

SAS For Dummies 2e (Paperback, 2nd Edition): S. McDaniel SAS For Dummies 2e (Paperback, 2nd Edition)
S. McDaniel
R664 R615 Discovery Miles 6 150 Save R49 (7%) Ships in 10 - 15 working days

The fun and easy way to learn to use this leading business intelligence tool

Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. "SAS For Dummies, 2nd Edition " gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide.SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and morePlaces special emphasis on Enterprise Guide and other analytical tools, covering all commonly used featuresCovers all commonly used features and shows you the practical applications you can put to work in your businessExplores how to get various types of data into the software and how to work with databasesCovers producing reports and Web reporting tools, analytics, macros, and working with your data

In the easy-to-follow, no-nonsense "For" "Dummies" format, "SAS For Dummies" gives you the knowledge and the confidence to get SAS working for your organization.

Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

Data Science for Infectious Disease Data Analytics - An Introduction with R (Hardcover): Lily Wang Data Science for Infectious Disease Data Analytics - An Introduction with R (Hardcover)
Lily Wang
R2,463 Discovery Miles 24 630 Ships in 10 - 15 working days

Describes the entire data science procedure of how the infectious disease data are collected, curated, visualized, and fed to predictive models, which facilitates effective communication between data sources, scientists, and decision-makers. Describes practical concepts of infectious disease data and provides particular data science perspectives. Overview of the unique features and issues of infectious disease data and how they impact epidemic modeling and projection. Introduces various classes of models and state-of-the-art learning methods to analyze infectious diseases data with valuable insights on how different models and methods could be connected.

Time Series Analysis for the State-Space Model with R/Stan (Hardcover, 1st ed. 2021): Junichiro Hagiwara Time Series Analysis for the State-Space Model with R/Stan (Hardcover, 1st ed. 2021)
Junichiro Hagiwara
R3,680 Discovery Miles 36 800 Ships in 10 - 15 working days

This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.

Applied Statistics Using R - A Guide for the Social Sciences (Paperback): Mehmet Mehmetoglu, Matthias Mittner Applied Statistics Using R - A Guide for the Social Sciences (Paperback)
Mehmet Mehmetoglu, Matthias Mittner
R1,429 Discovery Miles 14 290 Ships in 9 - 17 working days

If you want to learn to use R for data analysis but aren't sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors' own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.

A Guide to Doing Statistics in Second Language Research Using SPSS and R (Hardcover, 2nd edition): Jenifer Larson-Hall A Guide to Doing Statistics in Second Language Research Using SPSS and R (Hardcover, 2nd edition)
Jenifer Larson-Hall
R4,816 Discovery Miles 48 160 Ships in 10 - 15 working days

A Guide to Doing Statistics in Second Language Research Using SPSS and R, Second Edition is the only text available that demonstrates how to use SPSS and R as specifically related to applied linguistics and SLA research. This new edition is up-to-date with the most recent version of the SPSS software and now also includes coverage of R, a software program increasingly used by researchers in this field. Supported by a number of pedagogical features, including tip boxes and practice activities, and a wealth of screenshots, this book takes readers through each step of performing and understanding statistical research, covering the most commonly used tests in second language research, including t-tests, correlation, and ANOVA. A robust accompanying website covers additional tests of interest to students and researchers, taking them step-by-step through carrying out these tests themselves. In this comprehensive and hands-on volume, Jenifer Larson-Hall equips readers with a thorough understanding and the practical skills necessary to conducting and interpreting statisical research effectively using SPSS and R, ideal for graduate students and researchers in SLA, social sciences, and applied lingustics. For more information and materials, please visit www.routledge.com/cw/larson-hall.

Analytical Methods in Statistics - AMISTAT, Liberec, Czech Republic, September 2019 (Hardcover, 1st ed. 2020): Matus Maciak,... Analytical Methods in Statistics - AMISTAT, Liberec, Czech Republic, September 2019 (Hardcover, 1st ed. 2020)
Matus Maciak, Michal Pesta, Martin Schindler
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.

Exploiting Mental Imagery with Computers in Mathematics Education - Proceedings of the NATO Advanced Research Workshop on... Exploiting Mental Imagery with Computers in Mathematics Education - Proceedings of the NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education, Held at Eynsham Hall, Oxford, May 20-25, 1993 (Hardcover)
Rosamund Sutherland, John Mason
R2,438 Discovery Miles 24 380 Ships in 18 - 22 working days

The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

Dynamic Documents with R and knitr (Paperback, 2nd edition): Yihui Xie Dynamic Documents with R and knitr (Paperback, 2nd edition)
Yihui Xie
R2,285 Discovery Miles 22 850 Ships in 10 - 15 working days

Quickly and Easily Write Dynamic Documents Suitable for both beginners and advanced users, Dynamic Documents with R and knitr, Second Edition makes writing statistical reports easier by integrating computing directly with reporting. Reports range from homework, projects, exams, books, blogs, and web pages to virtually any documents related to statistical graphics, computing, and data analysis. The book covers basic applications for beginners while guiding power users in understanding the extensibility of the knitr package. New to the Second Edition A new chapter that introduces R Markdown v2 Changes that reflect improvements in the knitr package New sections on generating tables, defining custom printing methods for objects in code chunks, the C/Fortran engines, the Stan engine, running engines in a persistent session, and starting a local server to serve dynamic documents Boost Your Productivity in Statistical Report Writing and Make Your Scientific Computing with R Reproducible Like its highly praised predecessor, this edition shows you how to improve your efficiency in writing reports. The book takes you from program output to publication-quality reports, helping you fine-tune every aspect of your report.

R and MATLAB (Hardcover): David E Hiebeler R and MATLAB (Hardcover)
David E Hiebeler
R2,297 Discovery Miles 22 970 Ships in 10 - 15 working days

The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today's increasingly interdisciplinary world, R and MATLAB (R) users from different backgrounds must often work together and share code. R and MATLAB (R) is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.

Accelerating MATLAB Performance - 1001 tips to speed up MATLAB programs (Hardcover): Yair M Altman Accelerating MATLAB Performance - 1001 tips to speed up MATLAB programs (Hardcover)
Yair M Altman
R3,022 Discovery Miles 30 220 Ships in 10 - 15 working days

The MATLAB (R) programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with thousands of helpful tips, it leaves no stone unturned, discussing every aspect of MATLAB. Ideal for novices and professionals alike, the book describes MATLAB performance in a scale and depth never before published. It takes a comprehensive approach to MATLAB performance, illustrating numerous ways to attain the desired speedup. The book covers MATLAB, CPU, and memory profiling and discusses various tradeoffs in performance tuning. It describes both the application of standard industry techniques in MATLAB, as well as methods that are specific to MATLAB such as using different data types or built-in functions. The book covers MATLAB vectorization, parallelization (implicit and explicit), optimization, memory management, chunking, and caching. It explains MATLAB's memory model and details how it can be leveraged. It describes the use of GPU, MEX, FPGA, and other forms of compiled code, as well as techniques for speeding up deployed applications. It details specific tips for MATLAB GUI, graphics, and I/O. It also reviews a wide variety of utilities, libraries, and toolboxes that can help to improve performance. Sufficient information is provided to allow readers to immediately apply the suggestions to their own MATLAB programs. Extensive references are also included to allow those who wish to expand the treatment of a particular topic to do so easily. Supported by an active website, and numerous code examples, the book will help readers rapidly attain significant reductions in development costs and program run times.

Multivariate Statistical Machine Learning Methods for Genomic Prediction (Hardcover, 1st ed. 2022): Osval Antonio Montesinos... Multivariate Statistical Machine Learning Methods for Genomic Prediction (Hardcover, 1st ed. 2022)
Osval Antonio Montesinos Lopez, Abelardo Montesinos Lopez, Jose Crossa
R1,621 Discovery Miles 16 210 Ships in 10 - 15 working days

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Applied Statistics Using R - A Guide for the Social Sciences (Hardcover): Mehmet Mehmetoglu, Matthias Mittner Applied Statistics Using R - A Guide for the Social Sciences (Hardcover)
Mehmet Mehmetoglu, Matthias Mittner
R5,603 Discovery Miles 56 030 Ships in 10 - 15 working days

If you want to learn to use R for data analysis but aren't sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors' own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.

Multiple Factor Analysis by Example Using R (Hardcover): Jerome Pages Multiple Factor Analysis by Example Using R (Hardcover)
Jerome Pages
R2,517 Discovery Miles 25 170 Ships in 10 - 15 working days

Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.

Analyzing Sensory Data with R (Hardcover): Thierry Worch, Sebastien  Le Analyzing Sensory Data with R (Hardcover)
Thierry Worch, Sebastien Le
R3,374 Discovery Miles 33 740 Ships in 10 - 15 working days

Choose the Proper Statistical Method for Your Sensory Data Issue Analyzing Sensory Data with R gives you the foundation to analyze and interpret sensory data. The book helps you find the most appropriate statistical method to tackle your sensory data issue. Covering quantitative, qualitative, and affective approaches, the book presents the big picture of sensory evaluation. Through an integrated approach that connects the different dimensions of sensory evaluation, you'll understand: The reasons why sensory data are collected The ways in which the data are collected and analyzed The intrinsic meaning of the data The interpretation of the data analysis results Each chapter corresponds to one main sensory topic. The chapters start with presenting the nature of the sensory evaluation and its objectives, the sensory particularities related to the sensory evaluation, details about the data set obtained, and the statistical analyses required. Using real examples, the authors then illustrate step by step how the analyses are performed in R. The chapters conclude with variants and extensions of the methods that are related to the sensory task itself, the statistical methodology, or both.

Software for Data Analysis - Programming with R (Hardcover, 1st ed. 2008. Corr. 2nd printing 2009): John Chambers Software for Data Analysis - Programming with R (Hardcover, 1st ed. 2008. Corr. 2nd printing 2009)
John Chambers
R4,671 Discovery Miles 46 710 Ships in 10 - 15 working days

John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.

Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users - Visualization of Dynamic Models and Control Simulations... Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users - Visualization of Dynamic Models and Control Simulations (Hardcover, 2012)
Nassim Khaled
R1,407 Discovery Miles 14 070 Ships in 18 - 22 working days

About this book * Gives the reader hands on example-base experience for simulating dynamical models in MATLAB (R)/Simulink (R) and animating them in VRML * More than 150 images describe each step in the model realizations helping readers to understand them visually * Diverse examples and profound problem treatment enable the reader to animate complex dynamical problems m-files, Simulink models, VRML files and jpegs available for download provide full solutions for the end-of-chapter problems Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users demonstrates the simulation and animation of physical systems using the MATLAB (R) Virtual Reality Toolbox (virtual models are created in V-Realm Builder). The book is divided into two parts; the first addresses MATLAB (R) and the second Simulink (R). The presentation is problem-based with each chapter teaching the reader a group of essential principles in the context of a step-by-step solution to a particular issue. Examples of the systems covered include mass-spring-dampers, a crank-slider mechanism and a moving vehicle. The examples are given in ascending level of difficulty and contain MATLAB (R)/Simulink (R) codes deliberately simplified so that readers can focus on: * understanding how to link a 3-d virtual scene to MATLAB (R)/Simulink (R); and * manipulating the 3-d virtual scene in MATLAB (R)/Simulink (R). When studied in sequence, the chapters of this text form a coherent whole enabling the reader to gain a thorough expertise in virtual simulation and animation of dynamical models using MATLAB (R)/Simulink (R). Individual chapters stand on their own, however, so that readers interested in a particular system can concentrate on it easily. Problems are provided in each chapter to give practice in the techniques demonstrated and to extend the range of the systems studied, for example, into the control sphere. Solution code for these problems can be downloaded from insert URL. Whether modeling the dynamics of a simple pendulum, a robot arm or a moving car, animation of a dynamical model can enliven and encourage understanding of mechanical systems and thus contribute to control design. Virtual Reality and Animation for MATLAB (R) and Simulink (R) Users will be instructive and interesting to anyone, researcher or student, working with the dynamics of physical systems. Readers are assumed to have some familiarity with MATLAB (R).

SAS Programming for Researchers and Social Scientists (Hardcover, 2nd Revised edition): Paul E. Spector SAS Programming for Researchers and Social Scientists (Hardcover, 2nd Revised edition)
Paul E. Spector
R4,573 Discovery Miles 45 730 Ships in 10 - 15 working days

Second Edition

SAS® PROGRAMMING FOR RESEARCHERS AND SOCIAL SCIENTISTS

By PAUL E. SPECTOR, University of South Florida

"Just what the novice SAS programmer needs, particularly those who have no real programming experience. For example, branching is one of the more difficult programming commands for students to implement and the author does an excellent

job of explaining this topic clearly and at a basic level. A big plus is the Common Errors section since students will definitely encounter errors."

?Robert Pavur, Management Science, University of North Texas

The book that won accolades from thousands has been completely revised! Taking a problem solving approach that focuses on common programming tasks that social scientists encounter in doing data analysis, Spector uses sample programs and examples from social science problems to show readers how to write orderly programs and avoid excessive and disorganized branching. He provides readers with a three-step approach (preplanning, writing the program, and debugging) and tips about helpful features and practices as well as how to avoid certain pitfalls.

"Spector has done an excellent job in explaining a somewhat difficult topic in a clear and concise manner. I like the fact that screen captures are included. It allows students to better follow what is being described in the book in relation to what is on the screen."

?Philip Craiger, Computer Science, University of Nebraska, Omaha

Updated to the latest SAS releases, the book has been thoroughly revised to provide readers with even more practical tips and advice. New features in this edition include:

*New sections on debugging in each chapter that provide advice about common errors

*End of chapter Debugging Exercises that offer readers the chance to practice spotting the errors in the sample programs

*New section in Chapter 1 on how to use the interface, including how to work with three separate windows, where to write the program, executing the program, managing the program files, and using the F key

*Five new appendices, including a Glossary of Programming Terms, A Summary of SAS Language Statements, A Summary of SAS PROCs, Information Sources for SAS PROCs, and Corrections for the Debugging Exercises

*Plus, a link to Spector's online SAS course!

Appropriate for readers with little or no knowledge of the SAS language, this book will enable readers to run each example, adapt the examples to real problems that the reader may have, and create a program.

"A solid introduction to programming in SAS, with a good, brief explanation of how that process differs from the usual point-and-click of Windows-based software such as SPSS and a spreadsheet. Even uninformed students can use it as a guide to creating SAS datasets, manipulating them, and writing programs in the SAS language that will produce all manner of statistical results."

?James P. Whittenburg, History, College of William & Mary

 

"Bridges the gap between programming syntax and programming applications. In contrast to other books on SAS programming, this book combines a clear explanation of the SAS language with a problem-solving approach to writing a SAS program. It provides the novice programmer with a useful and meaningful model for solving the types of programming problems encountered by researchers and social scientists."

?John E. Cornell, Biostatistician, Audie L. Murphy Memorial Hospital 


Growth Curve Analysis and Visualization Using R (Hardcover): Daniel Mirman Growth Curve Analysis and Visualization Using R (Hardcover)
Daniel Mirman
R2,650 Discovery Miles 26 500 Ships in 10 - 15 working days

Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author's website.

Multilevel and Longitudinal Modeling with IBM SPSS (Hardcover, 3rd edition): Ronald H Heck, Scott L. Thomas, Lynn N. Tabata Multilevel and Longitudinal Modeling with IBM SPSS (Hardcover, 3rd edition)
Ronald H Heck, Scott L. Thomas, Lynn N. Tabata
R5,098 Discovery Miles 50 980 Ships in 10 - 15 working days

Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms (Hardcover): C Ozdemir Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms (Hardcover)
C Ozdemir
R3,041 Discovery Miles 30 410 Ships in 10 - 15 working days

This book provides a full representation of Inverse Synthetic Aperture Radar (ISAR) imagery, which is a popular and important radar signal processing tool. The book covers all possible aspects of ISAR imaging. The book offers a fair amount of signal processing techniques and radar basics before introducing the inverse problem of ISAR and the forward problem of Synthetic Aperture Radar (SAR). Important concepts of SAR such as resolution, pulse compression and image formation are given together with associated MATLAB codes.

After providing the fundamentals for ISAR imaging, the book gives the detailed imaging procedures for ISAR imaging with associated MATLAB functions and codes. To enhance the image quality in ISAR imaging, several imaging tricks and fine-tuning procedures such as zero-padding and windowing are also presented. Finally, various real applications of ISAR imagery, like imaging the antenna-platform scattering, are given in a separate chapter. For all these algorithms, MATLAB codes and figures are included. The final chapter considers advanced concepts and trends in ISAR imaging.

Nonparametric Methods in Statistics with SAS Applications (Paperback): Olga Korosteleva Nonparametric Methods in Statistics with SAS Applications (Paperback)
Olga Korosteleva
R2,223 Discovery Miles 22 230 Ships in 10 - 15 working days

Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods. The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation. Drawing on data sets from the author's many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author's website.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,651 Discovery Miles 16 510
Proc SQL - Beyond the Basics Using SAS…
Kirk Paul Lafler Hardcover R1,918 Discovery Miles 19 180
The Global English Style Guide - Writing…
John R Kohl Hardcover R1,912 Discovery Miles 19 120
Essential Java for Scientists and…
Brian Hahn, Katherine Malan Paperback R1,266 Discovery Miles 12 660
Neutrosophic Sets in Decision Analysis…
Mohamed Abdel-Basset, Florentin Smarandache Hardcover R6,641 Discovery Miles 66 410
A Physicist's Guide to Mathematica
Patrick T Tam Paperback R1,622 Discovery Miles 16 220
Implementing CDISC Using SAS - An…
Chris Holland, Jack Shostak Hardcover R1,725 Discovery Miles 17 250
SAS Certified Professional Prep Guide…
Sas Institute Hardcover R3,329 Discovery Miles 33 290
An Introduction to Creating Standardized…
Todd Case, Yuting Tian Hardcover R1,501 Discovery Miles 15 010
Predictive Modeling with SAS Enterprise…
Kattamuri S Sarma Hardcover R2,338 Discovery Miles 23 380

 

Partners