![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.
This book covers the MATLAB syntax and the environment suitable for someone with no programming background. The first four chapters present information on basic MATLAB programming including computing terminology, MATLAB specific syntax and control structures, operators, arrays and matrices. The next cluster covers grouping data, working with files, making images, creating graphical user interfaces, experimenting with sound, and the debugging environment. The final three chapters contain case studies on using MATLAB and other tools and devices (e.g., Arduino, Linux, Git, Mex, etc.) important for basic programming knowledge. Companion files with code and 4 color figures are on the disc or available from the publisher. Features: Covers the MATLAB syntax and the environment, suitable for someone with no programming background Numerous examples, projects, and practical applications enhance understanding of subjects under discussion with over 100 MATLAB scripts and functions Includes companion files with code and 4 color figures from the text (on the disc or available from the publisher)
This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.
This book collects contributions written by well-known
statisticians and econometricians to acknowledge Leopold Simar s
far-reaching scientific impact on Statistics and Econometrics
throughout his career. The papers contained herein were presented
at a conference in This book collects contributions written by well-known
statisticians and econometricians to acknowledge Leopold Simar s
far-reaching scientific impact on Statistics and Econometrics
throughout his career. The papers contained herein were presented
at a conference in
Since the beginning of the seventies computer hardware is available to use programmable computers for various tasks. During the nineties the hardware has developed from the big main frames to personal workstations. Nowadays it is not only the hardware which is much more powerful, but workstations can do much more work than a main frame, compared to the seventies. In parallel we find a specialization in the software. Languages like COBOL for business orientated programming or Fortran for scientific computing only marked the beginning. The introduction of personal computers in the eighties gave new impulses for even further development, already at the beginning of the seven ties some special languages like SAS or SPSS were available for statisticians. Now that personal computers have become very popular the number of pro grams start to explode. Today we will find a wide variety of programs for almost any statistical purpose (Koch & Haag 1995)."
This unique resource provides engineers and students with a practical approach to quickly learning the software-defined radio concepts they need to know for their work in the field. By prototyping and evaluating actual digital communication systems capable of performing "over-the-air" wireless data transmission and reception, this volume helps readers attain a first-hand understanding of critical design trade-offs and issues. Moreover, professionals gain a sense of the actual "real-world" operational behavior of these systems. With the purchase of the book, readers gain access to several ready-made Simulink experiments at the publisher's website. This collection of laboratory experiments, along with several examples, enables engineers to successfully implement the designs discussed the book in a short period of time. These files can be executed using MATLAB version R2011b or later.
Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language.The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis on the Java Platform is a great choice for those who want to learn how statistical data analysis can be done using popular programming languages, who want to integrate data analysis algorithms in full-scale applications, and deploy such calculations on the web pages or computational servers regardless of their operating system. It is an excellent reference for scientific computations to solve real-world problems using a comprehensive stack of open-source Java libraries included in the DataMelt (DMelt) project and will be appreciated by many data-analysis scientists, engineers and students.
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
Recent achievements in hardware and software developments have enabled the introduction of a revolutionary technology: in-memory data management. This technology supports the flexible and extremely fast analysis of massive amounts of data, such as diagnoses, therapies, and human genome data. This book shares the latest research results of applying in-memory data management to personalized medicine, changing it from computational possibility to clinical reality. The authors provide details on innovative approaches to enabling the processing, combination, and analysis of relevant data in real-time. The book bridges the gap between medical experts, such as physicians, clinicians, and biological researchers, and technology experts, such as software developers, database specialists, and statisticians. Topics covered in this book include - amongst others - modeling of genome data processing and analysis pipelines, high-throughput data processing, exchange of sensitive data and protection of intellectual property. Beyond that, it shares insights on research prototypes for the analysis of patient cohorts, topology analysis of biological pathways, and combined search in structured and unstructured medical data, and outlines completely new processes that have now become possible due to interactive data analyses.
This is a book for people who love mechanics of composite materials and ? MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing the numerical calculations needed in mechanics of c- posite materials. In particular, the steps of the mechanical calculations will be emphasized in this book. The reader will not ?nd ready-made MATLAB programs for use as black boxes. Instead step-by-step solutions of composite material mechanics problems are examined in detail using MATLAB. All the problems in the book assume linear elastic behavior in structural mechanics. The emphasis is not on mass computations or programming, but rather on learning the composite material mechanics computations and understanding of the underlying concepts. The basic aspects of the mechanics of ?ber-reinforced composite materials are covered in this book. This includes lamina analysis in both the local and global coordinate systems, laminate analysis, and failure theories of a lamina.
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
This book features 13 papers presented at the Fifth International Symposium on Recurrence Plots, held August 2013 in Chicago, IL. It examines recent applications and developments in recurrence plots and recurrence quantification analysis (RQA) with special emphasis on biological and cognitive systems and the analysis of coupled systems using cross-recurrence methods. Readers will discover new applications and insights into a range of systems provided by recurrence plot analysis and new theoretical and mathematical developments in recurrence plots. Recurrence plot based analysis is a powerful tool that operates on real-world complex systems that are nonlinear, non-stationary, noisy, of any statistical distribution, free of any particular model type and not particularly long. Quantitative analyses promote the detection of system state changes, synchronized dynamical regimes or classification of system states. The book will be of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis of complex systems in general.
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.
This book provides an overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. Over 170 figures are included in the book.
These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.
An Introduction to R and Python for Data Analysis helps teach students to code in both R and Python simultaneously. As both R and Python can be used in similar manners, it is useful and efficient to learn both at the same time, helping lecturers and students to teach and learn more, save time, whilst reinforcing the shared concepts and differences of the systems. This tandem learning is highly useful for students, helping them to become literate in both languages, and develop skills which will be handy after their studies. This book presumes no prior experience with computing, and is intended to be used by students from a variety of backgrounds. The side-by-side formatting of this book helps introductory graduate students quickly grasp the basics of R and Python, with the exercises providing helping them to teach themselves the skills they will need upon the completion of their course, as employers now ask for competency in both R and Python. Teachers and lecturers will also find this book useful in their teaching, providing a singular work to help ensure their students are well trained in both computer languages. All data for exercises can be found here: https://github.com/tbrown122387/r_and_python_book/tree/master/data. Key features: - Teaches R and Python in a "side-by-side" way. - Examples are tailored to aspiring data scientists and statisticians, not software engineers. - Designed for introductory graduate students. - Does not assume any mathematical background.
The aim of stochastic programming is to find optimal decisions
in problems which involve uncertain data. This field is currently
developing rapidly with contributions from many disciplines
including operations research, mathematics, and probability. At the
same time, it is now being applied in a wide variety of subjects
ranging from agriculture to financial planning and from industrial
engineering to computer networks. This textbook provides a first
course in stochastic programming suitable for students with a basic
knowledge of linear programming, elementary analysis, and
probability. The authors aim to present a broad overview of the
main themes and methods of the subject. Its prime goal is to help
students develop an intuition on how to model uncertainty into
mathematical problems, what uncertainty changes bring to the
decision process, and what techniques help to manage uncertainty in
solving the problems. The book is highly illustrated with chapter summaries and many
examples and exercises. Students, researchers and practitioners in
operations research and the optimization area will find it
particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998) "
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings.
|
You may like...
JMP Essentials - An Illustrated Guide…
Curt Hinrichs, Chuck Boiler, …
Hardcover
R2,063
Discovery Miles 20 630
The Little SAS Enterprise Guide Book
Susan J Slaughter, Lora D Delwiche
Hardcover
R1,790
Discovery Miles 17 900
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,501
Discovery Miles 15 010
|