0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (14)
  • R250 - R500 (32)
  • R500+ (1,431)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

R Visualizations - Derive Meaning from Data (Hardcover): David Gerbing R Visualizations - Derive Meaning from Data (Hardcover)
David Gerbing
R2,337 Discovery Miles 23 370 Ships in 12 - 17 working days

R Visualizations: Derive Meaning from Data focuses on one of the two major topics of data analytics: data visualization, a.k.a., computer graphics. In the book, major R systems for visualization are discussed, organized by topic and not by system. Anyone doing data analysis will be shown how to use R to generate any of the basic visualizations with the R visualization systems. Further, this book introduces the author's lessR system, which always can accomplish a visualization with less coding than the use of other systems, sometimes dramatically so, and also provides accompanying statistical analyses. Key Features Presents thorough coverage of the leading R visualization system, ggplot2. Gives specific guidance on using base R graphics to attain visualizations of the same quality as those provided by ggplot2. Shows how to create a wide range of data visualizations: distributions of categorical and continuous variables, many types of scatterplots including with a third variable, time series, and maps. Inclusion of the various approaches to R graphics organized by topic instead of by system. Presents the recent work on interactive visualization in R. David W. Gerbing received his PhD from Michigan State University in 1979 in quantitative analysis, and currently is a professor of quantitative analysis in the School of Business at Portland State University. He has published extensively in the social and behavioral sciences with a focus on quantitative methods. His lessR package has been in development since 2009.

Statistics and Simulation - IWS 8, Vienna, Austria, September 2015 (Hardcover, 1st ed. 2018): Jurgen Pilz, Dieter Rasch,... Statistics and Simulation - IWS 8, Vienna, Austria, September 2015 (Hardcover, 1st ed. 2018)
Jurgen Pilz, Dieter Rasch, Viatcheslav B. Melas, Karl Moder
R3,720 Discovery Miles 37 200 Ships in 12 - 17 working days

This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 - 2009 and the 7th workshop was held in Rimini, Italy, in 2013.

Interactive Web-Based Data Visualization with R, plotly, and shiny (Hardcover): Carson Sievert Interactive Web-Based Data Visualization with R, plotly, and shiny (Hardcover)
Carson Sievert
R5,164 Discovery Miles 51 640 Ships in 12 - 17 working days

The richly illustrated Interactive Web-Based Data Visualization with R, plotly, and shiny focuses on the process of programming interactive web graphics for multidimensional data analysis. It is written for the data analyst who wants to leverage the capabilities of interactive web graphics without having to learn web programming. Through many R code examples, you will learn how to tap the extensive functionality of these tools to enhance the presentation and exploration of data. By mastering these concepts and tools, you will impress your colleagues with your ability to quickly generate more informative, engaging, and reproducible interactive graphics using free and open source software that you can share over email, export to pdf, and more. Key Features: Convert static ggplot2 graphics to an interactive web-based form Link, animate, and arrange multiple plots in standalone HTML from R Embed, modify, and respond to plotly graphics in a shiny app Learn best practices for visualizing continuous, discrete, and multivariate data Learn numerous ways to visualize geo-spatial data This book makes heavy use of plotly for graphical rendering, but you will also learn about other R packages that support different phases of a data science workflow, such as tidyr, dplyr, and tidyverse. Along the way, you will gain insight into best practices for visualization of high-dimensional data, statistical graphics, and graphical perception. The printed book is complemented by an interactive website where readers can view movies demonstrating the examples and interact with graphics.

The New Statistics with R - An Introduction for Biologists (Paperback, 2nd Revised edition): Andy Hector The New Statistics with R - An Introduction for Biologists (Paperback, 2nd Revised edition)
Andy Hector 1
R1,271 Discovery Miles 12 710 Ships in 9 - 15 working days

Statistical methods are a key tool for all scientists working with data, but learning the basics continues to challenge successive generations of students. This accessible textbook provides an up-to-date introduction to the classical techniques and modern extensions of linear model analysis-one of the most useful approaches for investigating scientific data in the life and environmental sciences. While some of the foundational analyses (e.g. t tests, regression, ANOVA) are as useful now as ever, best practice moves on and there are many new general developments that offer great potential. The book emphasizes an estimation-based approach that takes account of recent criticisms of over-use of probability values and introduces the alternative approach that uses information criteria. This new edition includes the latest advances in R and related software and has been thoroughly "road-tested" over the last decade to create a proven textbook that teaches linear and generalized linear model analysis to students of ecology, evolution, and environmental studies (including worked analyses of data sets relevant to all three disciplines). While R is used throughout, the focus remains firmly on statistical analysis. The New Statistics with R is suitable for senior undergraduate and graduate students, professional researchers, and practitioners in the fields of ecology, evolution and environmental studies.

Computer Intensive Statistical Methods - Validation, Model Selection, and Bootstrap (Paperback): J.S. Urban Hjorth Computer Intensive Statistical Methods - Validation, Model Selection, and Bootstrap (Paperback)
J.S. Urban Hjorth
R1,794 Discovery Miles 17 940 Ships in 12 - 17 working days

This book focuses on computer intensive statistical methods, such as validation, model selection, and bootstrap, that help overcome obstacles that could not be previously solved by methods such as regression and time series modelling in the areas of economics, meteorology, and transportation.

Interactive Graphics for Data Analysis - Principles and Examples (Paperback): Martin Theus, Simon Urbanek Interactive Graphics for Data Analysis - Principles and Examples (Paperback)
Martin Theus, Simon Urbanek
R1,797 Discovery Miles 17 970 Ships in 12 - 17 working days

Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets. Fundamentals of Interactive Statistical GraphicsThe first part of the book summarizes principles and methodology, demonstrating how the different graphical representations of variables of a dataset are effectively used in an interactive setting. The authors introduce the most important plots and their interactive controls. They also examine various types of data, relations between variables, and plot ensembles. Case Studies Illustrate the PrinciplesThe second section focuses on nine case studies. Each case study describes the background, lists the main goals of the analysis and the variables in the dataset, shows what further numerical procedures can add to the graphical analysis, and summarizes important findings. Wherever applicable, the authors also provide the numerical analysis for datasets found in Cox and Snell's landmark book. Understand How to Analyze Data through Graphical Means This full-color text shows that interactive graphical methods complement the traditional statistical toolbox to achieve more complete, easier to understand, and easier to interpret analyses.

Using Excel for Business and Financial Modelling -  A Practical guide, 3rd edition (Paperback, 3rd Edition): DS Fairhurst Using Excel for Business and Financial Modelling - A Practical guide, 3rd edition (Paperback, 3rd Edition)
DS Fairhurst
R1,788 Discovery Miles 17 880 Ships in 12 - 17 working days

A hands-on guide to using Excel in the business context First published in 2012, Using Excel for Business and Financial Modelling contains step-by-step instructions of how to solve common business problems using financial models, including downloadable Excel templates, a list of shortcuts and tons of practical tips and techniques you can apply straight away. Whilst there are many hundreds of tools, features and functions in Excel, this book focuses on the topics most relevant to finance professionals. It covers these features in detail from a practical perspective, but also puts them in context by applying them to practical examples in the real world. Learn to create financial models to help make business decisions whilst applying modelling best practice methodology, tools and techniques. - Provides the perfect mix of practice and theory - Helps you become a DIY Excel modelling specialist - Includes updates for Excel 2019/365 and Excel for Mac - May be used as an accompaniment to the author's online and face-to-face training courses Many people are often overwhelmed by the hundreds of tools in Excel, and this book gives clarity to the ones you need to know in order to perform your job more efficiently. This book also demystifies the technical, design, logic and financial skills you need for business and financial modelling.

Independent Random Sampling Methods (Hardcover, 1st ed. 2018): Luca Martino, David Luengo, Joaquin Miguez Independent Random Sampling Methods (Hardcover, 1st ed. 2018)
Luca Martino, David Luengo, Joaquin Miguez
R3,719 Discovery Miles 37 190 Ships in 12 - 17 working days

This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.

Regression Modeling - Methods, Theory, and Computation with SAS (Paperback): Michael Panik Regression Modeling - Methods, Theory, and Computation with SAS (Paperback)
Michael Panik
R1,959 Discovery Miles 19 590 Ships in 12 - 17 working days

Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs. The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs. A Comprehensive, Accessible Source on Regression Methodology and ModelingRequiring only basic knowledge of statistics and calculus, this book discusses how to use regression analysis for decision making and problem solving. It shows readers the power and diversity of regression techniques without overwhelming them with calculations.

The Art of Modeling in Science and Engineering with Mathematica (Paperback, 2nd edition): Diran Basmadjian, Ramin Farnood The Art of Modeling in Science and Engineering with Mathematica (Paperback, 2nd edition)
Diran Basmadjian, Ramin Farnood
R1,916 Discovery Miles 19 160 Ships in 12 - 17 working days

Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica (R), Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with Mathematica , which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson's famous experiment to determine e/m and Euler's model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range of physical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.

SPSS Demystified - A Simple Guide and Reference (Hardcover, 4th edition): Ronald D. Yockey SPSS Demystified - A Simple Guide and Reference (Hardcover, 4th edition)
Ronald D. Yockey
R4,836 Discovery Miles 48 360 Ships in 12 - 17 working days

Without question, statistics is one of the most challenging courses for students in the social and behavioral sciences. Enrolling in their first statistics course, students are often apprehensive or extremely anxious toward the subject matter. And while IBM SPSS is one of the more easy-to-use statistical software programs available, for anxious students who realize they not only have to learn statistics but also new software, the task can seem insurmountable. Keenly aware of students' anxiety with statistics (and the fact that this anxiety can affect performance), Ronald D. Yockey has written SPSS Demystified: A Simple Guide and Reference, now in its fourth edition. Through a comprehensive, step-by-step approach, this text is consistently and specifically designed to both alleviate anxiety toward the subject matter and build a successful experience analyzing data in SPSS. Topics covered in the text are appropriate for most introductory and intermediate statistics and research methods courses. Key features of the text: Step-by-step instruction and screenshots Designed to be hands-on with the user performing the analyses alongside on their computer as they read through each chapter Call-out boxes provided, highlighting important information as appropriate SPSS output explained, with written results provided using the popular, widely recognized APA format End-of-chapter exercises included, allowing for additional practice SPSS datasets available on the publisher's website New to the Fourth Edition: Fully updated to SPSS 28 Updated screenshots in full color to reflect changes in SPSS software system (version 28) Exercises updated with up-to-date examples Exact p-values provided (consist with APA recommendations)

A Workout in Computational Finance (Hardcover, New): M Aichinger A Workout in Computational Finance (Hardcover, New)
M Aichinger
R1,748 R1,275 Discovery Miles 12 750 Save R473 (27%) Ships in 12 - 17 working days

A comprehensive introduction to various numerical methods used in computational finance today

Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and calibration of specific financial instruments and models. It features a strong emphasis on robust schemes for the numerical treatment of problems within computational finance. Methods covered include PDE/PIDE using finite differences or finite elements, fast and stable solvers for sparse grid systems, stabilization and regularization techniques for inverse problems resulting from the calibration of financial models to market data, Monte Carlo and Quasi Monte Carlo techniques for simulating high dimensional systems, and local and global optimization tools to solve the minimization problem.

An Introduction to Statistical Learning - with Applications in R (Paperback, 2nd ed. 2021): Gareth James, Daniela Witten,... An Introduction to Statistical Learning - with Applications in R (Paperback, 2nd ed. 2021)
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
R1,599 Discovery Miles 15 990 Ships in 12 - 17 working days

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

Statistics and Data Visualisation with Python (Hardcover): Jesus Rogel-Salazar Statistics and Data Visualisation with Python (Hardcover)
Jesus Rogel-Salazar
R3,598 Discovery Miles 35 980 Ships in 12 - 17 working days

* Targests readers with a background in programming, interested in an introduction/refresher in statistical hypothesis testing * Uses Python throughout * Provides the reader with the opportunity of using the book whenever needed rather than following a sequential path.

Statistical Studies of Income, Poverty and Inequality in Europe - Computing and Graphics in R using EU-SILC (Paperback):... Statistical Studies of Income, Poverty and Inequality in Europe - Computing and Graphics in R using EU-SILC (Paperback)
Nicholas T. Longford
R1,378 Discovery Miles 13 780 Ships in 12 - 17 working days

There is no shortage of incentives to study and reduce poverty in our societies. Poverty is studied in economics and political sciences, and population surveys are an important source of information about it. The design and analysis of such surveys is principally a statistical subject matter and the computer is essential for their data compilation and processing. Focusing on The European Union Statistics on Income and Living Conditions (EU-SILC), a program of annual national surveys which collect data related to poverty and social exclusion, Statistical Studies of Income, Poverty and Inequality in Europe: Computing and Graphics in R presents a set of statistical analyses pertinent to the general goals of EU-SILC. The contents of the volume are biased toward computing and statistics, with reduced attention to economics, political and other social sciences. The emphasis is on methods and procedures as opposed to results, because the data from annual surveys made available since publication and in the near future will degrade the novelty of the data used and the results derived in this volume. The aim of this volume is not to propose specific methods of analysis, but to open up the analytical agenda and address the aspects of the key definitions in the subject of poverty assessment that entail nontrivial elements of arbitrariness. The presented methods do not exhaust the range of analyses suitable for EU-SILC, but will stimulate the search for new methods and adaptation of established methods that cater to the identified purposes.

Handbook of Univariate and Multivariate Data Analysis with IBM SPSS (Paperback, 2nd edition): Robert Ho Handbook of Univariate and Multivariate Data Analysis with IBM SPSS (Paperback, 2nd edition)
Robert Ho
R1,407 Discovery Miles 14 070 Ships in 12 - 17 working days

Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows. New to the Second Edition Three new chapters on multiple discriminant analysis, logistic regression, and canonical correlation New section on how to deal with missing data Coverage of tests of assumptions, such as linearity, outliers, normality, homogeneity of variance-covariance matrices, and multicollinearity Discussions of the calculation of Type I error and the procedure for testing statistical significance between two correlation coefficients obtained from two samples Expanded coverage of factor analysis, path analysis (test of the mediation hypothesis), and structural equation modeling Suitable for both newcomers and seasoned researchers in the social sciences, the handbook offers a clear guide to selecting the right statistical test, executing a wide range of univariate and multivariate statistical tests via the Windows and syntax methods, and interpreting the output results. The SPSS syntax files used for executing the statistical tests can be found in the appendix. Data sets employed in the examples are available on the book's CRC Press web page.

Statistical Computing in C++ and R (Paperback): Randall L. Eubank, Ana Kupresanin Statistical Computing in C++ and R (Paperback)
Randall L. Eubank, Ana Kupresanin
R1,403 Discovery Miles 14 030 Ships in 12 - 17 working days

With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors' website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.

The Signed Distance Measure in Fuzzy Statistical Analysis - Theoretical, Empirical and Programming Advances (Hardcover, 1st ed.... The Signed Distance Measure in Fuzzy Statistical Analysis - Theoretical, Empirical and Programming Advances (Hardcover, 1st ed. 2021)
Redina Berkachy
R3,050 Discovery Miles 30 500 Ships in 12 - 17 working days

The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.

Bayesian Statistics from Methods to Models and Applications - Research from BAYSM 2014 (Hardcover, 2015 ed.): Sylvia... Bayesian Statistics from Methods to Models and Applications - Research from BAYSM 2014 (Hardcover, 2015 ed.)
Sylvia Fruhwirth-Schnatter, Angela Bitto, Gregor Kastner, Alexandra Posekany
R3,995 R3,347 Discovery Miles 33 470 Save R648 (16%) Ships in 12 - 17 working days

The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to the 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Universite Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session with 30 contributions. Selected contributions have been drawn from the conference for this book. All contributions in this volume are peer-reviewed and share original research in Bayesian computation, application, and theory.

Compositional Data Analysis in Practice (Hardcover): Michael Greenacre Compositional Data Analysis in Practice (Hardcover)
Michael Greenacre
R3,473 Discovery Miles 34 730 Ships in 9 - 15 working days

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance. R Software The following repository contains data files and R scripts from the book https://github.com/michaelgreenacre/CODAinPractice. The R package easyCODA, which accompanies this book, is available on CRAN -- note that you should have version 0.25 or higher. The latest version of the package will always be available on R-Forge and can be installed from R with this instruction: install.packages("easyCODA", repos="http://R-Forge.R-project.org").

A Criminologist's Guide to R - Crime by the Numbers (Hardcover): Jacob Kaplan A Criminologist's Guide to R - Crime by the Numbers (Hardcover)
Jacob Kaplan
R2,346 Discovery Miles 23 460 Ships in 12 - 17 working days

A Criminologist's Guide to R: Crime by the Numbers introduces the programming language R and covers the necessary skills to conduct quantitative research in criminology. By the end of this book, a person without any prior programming experience can take raw crime data, be able to clean it, visualize the data, present it using R Markdown, and change it to a format ready for analysis. A Criminologist's Guide to R focuses on skills specifically for criminology such as spatial joins, mapping, and scraping data from PDFs, however any social scientist looking for an introduction to R for data analysis will find this useful. Key Features: Introduction to RStudio including how to change user preference settings. Basic data exploration and cleaning - subsetting, loading data, regular expressions, aggregating data. Graphing with ggplot2. How to make maps (hotspot maps, choropleth maps, interactive maps). Webscraping and PDF scraping. Project management - how to prepare for a project, how to decide which projects to do, best ways to collaborate with people, how to store your code (using git), and how to test your code.

Data Science for Infectious Disease Data Analytics - An Introduction with R (Hardcover): Lily Wang Data Science for Infectious Disease Data Analytics - An Introduction with R (Hardcover)
Lily Wang
R2,345 Discovery Miles 23 450 Ships in 12 - 17 working days

Describes the entire data science procedure of how the infectious disease data are collected, curated, visualized, and fed to predictive models, which facilitates effective communication between data sources, scientists, and decision-makers. Describes practical concepts of infectious disease data and provides particular data science perspectives. Overview of the unique features and issues of infectious disease data and how they impact epidemic modeling and projection. Introduces various classes of models and state-of-the-art learning methods to analyze infectious diseases data with valuable insights on how different models and methods could be connected.

Applied Optimization with MATLAB Programming 2e (Hardcover, 2nd Edition): P. Venkataraman Applied Optimization with MATLAB Programming 2e (Hardcover, 2nd Edition)
P. Venkataraman
R3,519 Discovery Miles 35 190 Ships in 12 - 17 working days

Technology/Engineering/Mechanical

Provides all the tools needed to begin solving optimization problems using MATLAB(R)

The Second Edition of Applied Optimization with MATLAB(R) Programming enables readers to harness all the features of MATLAB(R) to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems.

This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB(R) tools. Two important new features of the text are:

Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems

New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems

Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB(R) code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own.

This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.

Understanding Military Doctrine - A Multidisciplinary Approach (Paperback): Harald Hoiback Understanding Military Doctrine - A Multidisciplinary Approach (Paperback)
Harald Hoiback
R1,363 Discovery Miles 13 630 Ships in 12 - 17 working days

This book puts military doctrine into a wider perspective, drawing on military history, philosophy, and political science. Military doctrines are institutional beliefs about what works in war; given the trauma of 9/11 and the ensuing 'War on Terror', serious divergences over what the message of the 'new' military doctrine ought to be were expected around the world. However, such questions are often drowned in ferocious meta-doctrinal disagreements. What is a doctrine, after all? This book provides a theoretical understanding of such questions. Divided into three parts, the author investigates the historical roots of military doctrine and explores its growth and expansion until the present day, and goes on to analyse the main characteristics of a military doctrine. Using a multidisciplinary approach, the book concludes that doctrine can be utilized in three key ways: as a tool of command, as a tool of change, and as a tool of education. This book will be of much interest to students of military studies, civil-military relations, strategic studies, and war studies, as well as to students in professional military education.

Applied Compositional Data Analysis - With Worked Examples in R (Hardcover, 1st ed. 2018): Peter Filzmoser, Karel Hron,... Applied Compositional Data Analysis - With Worked Examples in R (Hardcover, 1st ed. 2018)
Peter Filzmoser, Karel Hron, Matthias Templ
R3,630 Discovery Miles 36 300 Ships in 10 - 15 working days

This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,707 Discovery Miles 17 070
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R12,404 Discovery Miles 124 040
SAS Certified Specialist Prep Guide…
Sas Institute Hardcover R3,301 Discovery Miles 33 010
SAS Certified Professional Prep Guide…
Sas Institute Hardcover R3,600 Discovery Miles 36 000
Proc SQL - Beyond the Basics Using SAS…
Kirk Paul Lafler Hardcover R2,007 Discovery Miles 20 070
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, … Hardcover R2,644 Discovery Miles 26 440
Higher Education 4.0 - The Digital…
Kevin Anthony Jones, Sharma Ravishankar Hardcover R4,378 Discovery Miles 43 780
SAS for Mixed Models - Introduction and…
Walter W. Stroup, George A. Milliken, … Hardcover R3,147 Discovery Miles 31 470
Markov Processes and Quantum Theory
Masao Nagasawa Hardcover R3,725 Discovery Miles 37 250
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland Hardcover R2,922 Discovery Miles 29 220

 

Partners