0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (29)
  • R500+ (1,400)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

The R Book 3e (Hardcover): E Jones The R Book 3e (Hardcover)
E Jones
R2,192 Discovery Miles 21 920 Ships in 9 - 17 working days

A start-to-finish guide to one of the most useful programming languages for researchers in a variety of fields In the newly revised Third Edition of The R Book, a team of distinguished teachers and researchers delivers a user-friendly and comprehensive discussion of foundational and advanced topics in the R software language, which is used widely in science, engineering, medicine, economics, and other fields. The book is designed to be used as both a complete text--readable from cover to cover--and as a reference manual for practitioners seeking authoritative guidance on particular topics. This latest edition offers instruction on the use of the RStudio GUI, an easy-to-use environment for those new to R. It provides readers with a complete walkthrough of the R language, beginning at a point that assumes no prior knowledge of R and very little previous knowledge of statistics. Readers will also find: A thorough introduction to fundamental concepts in statistics and step-by-step roadmaps to their implementation in R; Comprehensive explorations of worked examples in R; A complementary companion website with downloadable datasets that are used in the book; In-depth examination of essential R packages. Perfect for undergraduate and postgraduate students of science, engineering, medicine economics, and geography, The R Book will also earn a place in the libraries of social sciences professionals.

Mathematical Statistics and Limit Theorems - Festschrift in Honour of Paul Deheuvels (Hardcover, 2015 ed.): Marc Hallin, David... Mathematical Statistics and Limit Theorems - Festschrift in Honour of Paul Deheuvels (Hardcover, 2015 ed.)
Marc Hallin, David M. Mason, Dietmar Pfeifer, Josef G. Steinebach
R3,441 Discovery Miles 34 410 Ships in 10 - 15 working days

This Festschrift in honour of Paul Deheuvels' 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.

Data Science Techniques for Cryptocurrency Blockchains (Hardcover, 1st ed. 2021): Innar Liiv Data Science Techniques for Cryptocurrency Blockchains (Hardcover, 1st ed. 2021)
Innar Liiv
R3,332 Discovery Miles 33 320 Ships in 18 - 22 working days

This book brings together two major trends: data science and blockchains. It is one of the first books to systematically cover the analytics aspects of blockchains, with the goal of linking traditional data mining research communities with novel data sources. Data science and big data technologies can be considered cornerstones of the data-driven digital transformation of organizations and society. The concept of blockchain is predicted to enable and spark transformation on par with that associated with the invention of the Internet. Cryptocurrencies are the first successful use case of highly distributed blockchains, like the world wide web was to the Internet. The book takes the reader through basic data exploration topics, proceeding systematically, method by method, through supervised and unsupervised learning approaches and information visualization techniques, all the way to understanding the blockchain data from the network science perspective. Chapters introduce the cryptocurrency blockchain data model and methods to explore it using structured query language, association rules, clustering, classification, visualization, and network science. Each chapter introduces basic concepts, presents examples with real cryptocurrency blockchain data and offers exercises and questions for further discussion. Such an approach intends to serve as a good starting point for undergraduate and graduate students to learn data science topics using cryptocurrency blockchain examples. It is also aimed at researchers and analysts who already possess good analytical and data skills, but who do not yet have the specific knowledge to tackle analytic questions about blockchain transactions. The readers improve their knowledge about the essential data science techniques in order to turn mere transactional information into social, economic, and business insights.

Applied Predictive Modeling (Hardcover, 1st ed. 2013, Corr. 2nd printing 2018): Max Kuhn, Kjell Johnson Applied Predictive Modeling (Hardcover, 1st ed. 2013, Corr. 2nd printing 2018)
Max Kuhn, Kjell Johnson
R2,411 Discovery Miles 24 110 Ships in 10 - 15 working days

This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f

Bayesian Statistics from Methods to Models and Applications - Research from BAYSM 2014 (Hardcover, 2015 ed.): Sylvia... Bayesian Statistics from Methods to Models and Applications - Research from BAYSM 2014 (Hardcover, 2015 ed.)
Sylvia Fruhwirth-Schnatter, Angela Bitto, Gregor Kastner, Alexandra Posekany
R3,832 R3,301 Discovery Miles 33 010 Save R531 (14%) Ships in 10 - 15 working days

The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to the 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Universite Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session with 30 contributions. Selected contributions have been drawn from the conference for this book. All contributions in this volume are peer-reviewed and share original research in Bayesian computation, application, and theory.

Statistical Computing in C++ and R (Paperback): Randall L. Eubank, Ana Kupresanin Statistical Computing in C++ and R (Paperback)
Randall L. Eubank, Ana Kupresanin
R1,482 Discovery Miles 14 820 Ships in 10 - 15 working days

With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors' website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.

How to Think about Data Science (Hardcover): Diego Miranda-Saavedra How to Think about Data Science (Hardcover)
Diego Miranda-Saavedra
R3,379 Discovery Miles 33 790 Ships in 10 - 15 working days

This book is a timely and critical introduction for those interested in what data science is (and isn't), and how it should be applied. The language is conversational and the content is accessible for readers without a quantitative or computational background; but, at the same time, it is also a practical overview of the field for the more technical readers. The overarching goal is to demystify the field and teach the reader how to develop an analytical mindset instead of following recipes. The book takes the scientist's approach of focusing on asking the right question at every step as this is the single most important factor contributing to the success of a data science project. Upon finishing this book, the reader should be asking more questions than I have answered. This book is, therefore, a practising scientist's approach to explaining data science through questions and examples.

Statistical Studies of Income, Poverty and Inequality in Europe - Computing and Graphics in R using EU-SILC (Paperback):... Statistical Studies of Income, Poverty and Inequality in Europe - Computing and Graphics in R using EU-SILC (Paperback)
Nicholas T. Longford
R1,429 Discovery Miles 14 290 Ships in 10 - 15 working days

There is no shortage of incentives to study and reduce poverty in our societies. Poverty is studied in economics and political sciences, and population surveys are an important source of information about it. The design and analysis of such surveys is principally a statistical subject matter and the computer is essential for their data compilation and processing. Focusing on The European Union Statistics on Income and Living Conditions (EU-SILC), a program of annual national surveys which collect data related to poverty and social exclusion, Statistical Studies of Income, Poverty and Inequality in Europe: Computing and Graphics in R presents a set of statistical analyses pertinent to the general goals of EU-SILC. The contents of the volume are biased toward computing and statistics, with reduced attention to economics, political and other social sciences. The emphasis is on methods and procedures as opposed to results, because the data from annual surveys made available since publication and in the near future will degrade the novelty of the data used and the results derived in this volume. The aim of this volume is not to propose specific methods of analysis, but to open up the analytical agenda and address the aspects of the key definitions in the subject of poverty assessment that entail nontrivial elements of arbitrariness. The presented methods do not exhaust the range of analyses suitable for EU-SILC, but will stimulate the search for new methods and adaptation of established methods that cater to the identified purposes.

The Measurement of Association - A Permutation Statistical Approach (Hardcover, 1st ed. 2018): Kenneth J. Berry, Janis E.... The Measurement of Association - A Permutation Statistical Approach (Hardcover, 1st ed. 2018)
Kenneth J. Berry, Janis E. Johnston, Paul W. Mielke Jr.
R4,139 Discovery Miles 41 390 Ships in 18 - 22 working days

This research monograph utilizes exact and Monte Carlo permutation statistical methods to generate probability values and measures of effect size for a variety of measures of association. Association is broadly defined to include measures of correlation for two interval-level variables, measures of association for two nominal-level variables or two ordinal-level variables, and measures of agreement for two nominal-level or two ordinal-level variables. Additionally, measures of association for mixtures of the three levels of measurement are considered: nominal-ordinal, nominal-interval, and ordinal-interval measures. Numerous comparisons of permutation and classical statistical methods are presented. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This book takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field. This topic is relatively new in that it took modern computing power to make permutation methods available to those working in mainstream research. Written for a statistically informed audience, it is particularly useful for teachers of statistics, practicing statisticians, applied statisticians, and quantitative graduate students in fields such as psychology, medical research, epidemiology, public health, and biology. It can also serve as a textbook in graduate courses in subjects like statistics, psychology, and biology.

Compositional Data Analysis in Practice (Hardcover): Michael Greenacre Compositional Data Analysis in Practice (Hardcover)
Michael Greenacre
R3,708 Discovery Miles 37 080 Ships in 9 - 17 working days

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance. R Software The following repository contains data files and R scripts from the book https://github.com/michaelgreenacre/CODAinPractice. The R package easyCODA, which accompanies this book, is available on CRAN -- note that you should have version 0.25 or higher. The latest version of the package will always be available on R-Forge and can be installed from R with this instruction: install.packages("easyCODA", repos="http://R-Forge.R-project.org").

R for Business Analytics (Hardcover, 2013 ed.): A. Ohri R for Business Analytics (Hardcover, 2013 ed.)
A. Ohri
R3,144 Discovery Miles 31 440 Ships in 18 - 22 working days

"R for Business Analytics" looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut downand bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics.

This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field ofexploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategizeand DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy.

The book utilizes Albert Einstein s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimovwas a better writer in spreading science than any textbook or journal author."

Understanding Military Doctrine - A Multidisciplinary Approach (Paperback): Harald Hoiback Understanding Military Doctrine - A Multidisciplinary Approach (Paperback)
Harald Hoiback
R1,415 Discovery Miles 14 150 Ships in 10 - 15 working days

This book puts military doctrine into a wider perspective, drawing on military history, philosophy, and political science. Military doctrines are institutional beliefs about what works in war; given the trauma of 9/11 and the ensuing 'War on Terror', serious divergences over what the message of the 'new' military doctrine ought to be were expected around the world. However, such questions are often drowned in ferocious meta-doctrinal disagreements. What is a doctrine, after all? This book provides a theoretical understanding of such questions. Divided into three parts, the author investigates the historical roots of military doctrine and explores its growth and expansion until the present day, and goes on to analyse the main characteristics of a military doctrine. Using a multidisciplinary approach, the book concludes that doctrine can be utilized in three key ways: as a tool of command, as a tool of change, and as a tool of education. This book will be of much interest to students of military studies, civil-military relations, strategic studies, and war studies, as well as to students in professional military education.

A Practical Guide to Scientific Data Analysis (Hardcover): D.J. Livingstone A Practical Guide to Scientific Data Analysis (Hardcover)
D.J. Livingstone
R1,910 Discovery Miles 19 100 Ships in 10 - 15 working days

Inspired by the author's need for practical guidance in the processes of data analysis, "A Practical Guide to Scientific Data Analysis" has been written as a statistical companion for the working scientist. This handbook of data analysis with worked examples focuses on the application of mathematical and statistical techniques and the interpretation of their results.

Covering the most common statistical methods for examining and exploring relationships in data, the text includes extensive examples from a variety of scientific disciplines.

The chapters are organised logically, from planning an experiment, through examining and displaying the data, to constructing quantitative models. Each chapter is intended to stand alone so that casual users can refer to the section that is most appropriate to their problem.

Written by a highly qualified and internationally respected author this text: Presents statistics for the non-statisticianExplains a variety of methods to extract information from dataDescribes the application of statistical methods to the design of "performance chemicals"Emphasises the application of statistical techniques and the interpretation of their results

Of practical use to chemists, biochemists, pharmacists, biologists and researchers from many other scientific disciplines in both industry and academia.

Numerical Analysis for Statisticians (Hardcover, 2nd ed. 2010): Kenneth Lange Numerical Analysis for Statisticians (Hardcover, 2nd ed. 2010)
Kenneth Lange
R4,118 Discovery Miles 41 180 Ships in 10 - 15 working days

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing - EPASA 2015, Tsukuba, Japan, September 2015... Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing - EPASA 2015, Tsukuba, Japan, September 2015 (Hardcover, 1st ed. 2017)
Tetsuya Sakurai, Shao-Liang Zhang, Toshiyuki Imamura, Yusaku Yamamoto, Yoshinobu Kuramashi, …
R5,203 Discovery Miles 52 030 Ships in 18 - 22 working days

This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas - and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Multivariate Survival Analysis and Competing Risks (Paperback): Martin J. Crowder Multivariate Survival Analysis and Competing Risks (Paperback)
Martin J. Crowder
R1,872 Discovery Miles 18 720 Ships in 10 - 15 working days

Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.

Modern Applied Statistics with S (Hardcover, 4th ed. 2002. Corr. 2nd printing 2003): W.N. Venables, B.D. Ripley Modern Applied Statistics with S (Hardcover, 4th ed. 2002. Corr. 2nd printing 2003)
W.N. Venables, B.D. Ripley
R4,740 Discovery Miles 47 400 Ships in 10 - 15 working days

S-PLUS is a powerful environment for the statistical and graphical analysis of data. It provides the tools to implement many statistical ideas which have been made possible by the widespread availability of workstations having good graphics and computational capabilities. This book is a guide to using S-PLUS to perform statistical analyses and provides both an introduction to the use of S-PLUS and a course in modern statistical methods. S-PLUS is available for both Windows and UNIX workstations, and both versions are covered in depth. The aim of the book is to show how to use S-PLUS as a powerful and graphical data analysis system. Readers are assumed to have a basic grounding in statistics, and so the book in intended for would-be users of S-PLUS and both students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets. Many of the methods discussed are state-of-the-art approaches to topics such as linear, nonlinear, and smooth regression models, tree-based methods, multivariate analysis and pattern recognition, survival analysis, time series and spatial statistics. Throughout, modern techniques such as robust methods, non-parametric smoothing, and bootstrapping are used where appropriate. This third edition is intended for users of S-PLUS 4.5, 5.0, 2000 or later, although S-PLUS 3.3/4 are also considered. The major change from the second edition is coverage of the current versions of S-PLUS. The material has been extensively rewritten using new examples and the latest computationally intensive methods. The companion volume on S Programming will provide an in-depth guide for those writing software in the S language. The authors have written several software libraries that enhance S-PLUS; these and all the datasets used are available on the Internet in versions for Windows and UNIX. There are extensive on-line complements covering advanced material, user-contributed extensions, further exercises, and new features of S-PLUS as they are introduced. Dr. Venables is now Statistician with CSRIO in Queensland, having been at the Department of Statistics, University of Adelaide, for many years previously. He has given many short courses on S-PLUS in Australia, Europe, and the USA. Professor Ripley holds the Chair of Applied Statistics at the University of Oxford, and is the author of four other books on spatial statistics, simulation, pattern recognition, and neural networks.

Statistics and Data Visualisation with Python (Hardcover): Jesus Rogel-Salazar Statistics and Data Visualisation with Python (Hardcover)
Jesus Rogel-Salazar
R3,695 Discovery Miles 36 950 Ships in 10 - 15 working days

* Targests readers with a background in programming, interested in an introduction/refresher in statistical hypothesis testing * Uses Python throughout * Provides the reader with the opportunity of using the book whenever needed rather than following a sequential path.

R for Programmers - Advanced Techniques (Paperback): Dan Zhang R for Programmers - Advanced Techniques (Paperback)
Dan Zhang
R2,372 Discovery Miles 23 720 Ships in 10 - 15 working days

This book discusses advanced topics such as R core programing, object oriented R programing, parallel computing with R, and spatial data types. The author leads readers to merge mature and effective methdologies in traditional programing to R programing. It shows how to interface R with C, Java, and other popular programing laguages and platforms.

Applied Compositional Data Analysis - With Worked Examples in R (Hardcover, 1st ed. 2018): Peter Filzmoser, Karel Hron,... Applied Compositional Data Analysis - With Worked Examples in R (Hardcover, 1st ed. 2018)
Peter Filzmoser, Karel Hron, Matthias Templ
R3,360 Discovery Miles 33 600 Ships in 18 - 22 working days

This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.

SPSS Demystified - A Simple Guide and Reference (Hardcover, 4th edition): Ronald D. Yockey SPSS Demystified - A Simple Guide and Reference (Hardcover, 4th edition)
Ronald D. Yockey
R5,052 Discovery Miles 50 520 Ships in 10 - 15 working days

Without question, statistics is one of the most challenging courses for students in the social and behavioral sciences. Enrolling in their first statistics course, students are often apprehensive or extremely anxious toward the subject matter. And while IBM SPSS is one of the more easy-to-use statistical software programs available, for anxious students who realize they not only have to learn statistics but also new software, the task can seem insurmountable. Keenly aware of students' anxiety with statistics (and the fact that this anxiety can affect performance), Ronald D. Yockey has written SPSS Demystified: A Simple Guide and Reference, now in its fourth edition. Through a comprehensive, step-by-step approach, this text is consistently and specifically designed to both alleviate anxiety toward the subject matter and build a successful experience analyzing data in SPSS. Topics covered in the text are appropriate for most introductory and intermediate statistics and research methods courses. Key features of the text: Step-by-step instruction and screenshots Designed to be hands-on with the user performing the analyses alongside on their computer as they read through each chapter Call-out boxes provided, highlighting important information as appropriate SPSS output explained, with written results provided using the popular, widely recognized APA format End-of-chapter exercises included, allowing for additional practice SPSS datasets available on the publisher's website New to the Fourth Edition: Fully updated to SPSS 28 Updated screenshots in full color to reflect changes in SPSS software system (version 28) Exercises updated with up-to-date examples Exact p-values provided (consist with APA recommendations)

Multilevel Modeling Using Mplus (Paperback): Holmes Finch, Jocelyn Bolin Multilevel Modeling Using Mplus (Paperback)
Holmes Finch, Jocelyn Bolin
R1,734 Discovery Miles 17 340 Ships in 10 - 15 working days

This book is designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. The focus is on presenting the theory and practice of major multilevel modelling techniques in a variety of contexts, using Mplus as the software tool, and demonstrating the various functions available for these analyses in Mplus, which is widely used by researchers in various fields, including most of the social sciences. In particular, Mplus offers users a wide array of tools for latent variable modelling, including for multilevel data.

A Criminologist's Guide to R - Crime by the Numbers (Hardcover): Jacob Kaplan A Criminologist's Guide to R - Crime by the Numbers (Hardcover)
Jacob Kaplan
R2,465 Discovery Miles 24 650 Ships in 10 - 15 working days

A Criminologist's Guide to R: Crime by the Numbers introduces the programming language R and covers the necessary skills to conduct quantitative research in criminology. By the end of this book, a person without any prior programming experience can take raw crime data, be able to clean it, visualize the data, present it using R Markdown, and change it to a format ready for analysis. A Criminologist's Guide to R focuses on skills specifically for criminology such as spatial joins, mapping, and scraping data from PDFs, however any social scientist looking for an introduction to R for data analysis will find this useful. Key Features: Introduction to RStudio including how to change user preference settings. Basic data exploration and cleaning - subsetting, loading data, regular expressions, aggregating data. Graphing with ggplot2. How to make maps (hotspot maps, choropleth maps, interactive maps). Webscraping and PDF scraping. Project management - how to prepare for a project, how to decide which projects to do, best ways to collaborate with people, how to store your code (using git), and how to test your code.

Using the R Commander - A Point-and-Click Interface for R (Paperback): John Fox Using the R Commander - A Point-and-Click Interface for R (Paperback)
John Fox
R1,890 Discovery Miles 18 900 Ships in 10 - 15 working days

This book provides a general introduction to the R Commander graphical user interface (GUI) to R for readers who are unfamiliar with R. It is suitable for use as a supplementary text in a basic or intermediate-level statistics course. It is not intended to replace a basic or other statistics text but rather to complement it, although it does promote sound statistical practice in the examples. The book should also be useful to individual casual or occasional users of R for whom the standard command-line interface is an obstacle.

Gmdh-methodology And Implementation In Matlab (Hardcover): Godfrey C. Onwubolu Gmdh-methodology And Implementation In Matlab (Hardcover)
Godfrey C. Onwubolu
R2,625 Discovery Miles 26 250 Ships in 18 - 22 working days

Group method of data handling (GMDH) is a typical inductive modeling method built on the principles of self-organization. Since its introduction, inductive modelling has been developed to support complex systems in prediction, clusterization, system identification, as well as data mining and knowledge extraction technologies in social science, science, engineering, and medicine.This is the first book to explore GMDH using MATLAB (matrix laboratory) language. Readers will learn how to implement GMDH in MATLAB as a method of dealing with big data analytics. Error-free source codes in MATLAB have been included in supplementary material (accessible online) to assist users in their understanding in GMDH and to make it easy for users to further develop variations of GMDH algorithms.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Statistical Physics of Non-Thermal Phase…
Sergey G Abaimov Hardcover R4,183 R2,179 Discovery Miles 21 790
Behaviourism in Studying Swarms: Logical…
Andrew Schumann Hardcover R4,031 R3,501 Discovery Miles 35 010
Fault Diagnosis Inverse Problems…
Lidice Camps Echevarria, Orestes Llanes Santiago, … Hardcover R2,879 Discovery Miles 28 790
Degree Theory in Analysis and…
Irene Fonseca, Wilfrid Gangbo Hardcover R4,288 Discovery Miles 42 880
Optimal Stochastic Control, Stochastic…
Nizar Touzi Hardcover R3,860 Discovery Miles 38 600
The Theory of Composites
Graeme W. Milton Paperback R2,711 R2,449 Discovery Miles 24 490
Brain-Machine Interface - Closed-loop…
Xilin Liu, Jan Van der Spiegel Hardcover R4,666 Discovery Miles 46 660
Engineering Properties of Rocks
Lianyang Zhang Paperback R1,809 Discovery Miles 18 090
Toxic Waste Minimization in the Printed…
T. Nunno, M. Arienti, … Hardcover R1,205 Discovery Miles 12 050
Soft Soil Engineering
A.K.L. Kwong Hardcover R13,454 Discovery Miles 134 540

 

Partners