0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (10)
  • R250 - R500 (29)
  • R500+ (1,402)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Handbook of Multiple Comparisons (Hardcover): Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu Handbook of Multiple Comparisons (Hardcover)
Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu
R6,216 Discovery Miles 62 160 Ships in 10 - 15 working days

Coherent treatment of a variety of approaches to multiple comparisons Broad coverage of topics, with contributions by internationally leading experts Detailed treatment of applications in medicine and life sciences Suitable for researchers, lecturers / students, and practitioners

Spatial Predictive Modeling with R (Hardcover): Jin Li Spatial Predictive Modeling with R (Hardcover)
Jin Li
R3,401 Discovery Miles 34 010 Ships in 10 - 15 working days

*Systematically introducing major components of SPM process. *Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods. *Novel predictive accuracy-based variable selection techniques for spatial predictive methods. *Predictive accuracy-based parameter/model optimization. *Reproducible examples for SPM of various data types in R.

Data Analytics for the Social Sciences - Applications in R (Paperback): G.David Garson Data Analytics for the Social Sciences - Applications in R (Paperback)
G.David Garson
R2,701 Discovery Miles 27 010 Ships in 10 - 15 working days

Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.

Computational Statistics Handbook with MATLAB (Paperback, 3rd edition): Wendy L. Martinez, Angel R. Martinez Computational Statistics Handbook with MATLAB (Paperback, 3rd edition)
Wendy L. Martinez, Angel R. Martinez
R1,566 Discovery Miles 15 660 Ships in 10 - 15 working days

A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB (R), Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods. New to the Third EditionThis third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines. Web ResourceThe authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition): Ronald H Heck, Scott L. Thomas, Lynn N. Tabata Multilevel and Longitudinal Modeling with IBM SPSS (Paperback, 3rd edition)
Ronald H Heck, Scott L. Thomas, Lynn N. Tabata
R1,559 Discovery Miles 15 590 Ships in 10 - 15 working days

Multilevel and Longitudinal Modeling with IBM SPSS, Third Edition, demonstrates how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Versions 25-27. Annotated screenshots with all relevant output provide readers with a step-by-step understanding of each technique as they are shown how to navigate the program. Throughout, diagnostic tools, data management issues, and related graphics are introduced. SPSS commands show the flow of the menu structure and how to facilitate model building, while annotated syntax is also available for those who prefer this approach. Extended examples illustrating the logic of model development and evaluation are included throughout the book, demonstrating the context and rationale of the research questions and the steps around which the analyses are structured. The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques that facilitate working with multilevel, longitudinal, or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, developing a multilevel model, extensions of the basic two-level model (e.g., three-level models, models for binary and ordinal outcomes), and troubleshooting techniques for everyday-use programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are next developed, followed by models with multivariate outcomes and, finally, models with cross-classified and multiple membership data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues (e.g., missing data, sample weights) to keep in mind in conducting multilevel analyses. Key features of the third edition: Thoroughly updated throughout to reflect IBM SPSS Versions 26-27. Introduction to fixed-effects regression for examining change over time where random-effects modeling may not be an optimal choice. Additional treatment of key topics specifically aligned with multilevel modeling (e.g., models with binary and ordinal outcomes). Expanded coverage of models with cross-classified and multiple membership data structures. Added discussion on model checking for improvement (e.g., examining residuals, locating outliers). Further discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures. Supported by online data sets, the book's practical approach makes it an essential text for graduate-level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in departments of business, education, health, psychology, and sociology. The book will also prove appealing to researchers in these fields. The book is designed to provide an excellent supplement to Heck and Thomas's An Introduction to Multilevel Modeling Techniques, Fourth Edition; however, it can also be used with any multilevel or longitudinal modeling book or as a stand-alone text.

Handbook of Bayesian Variable Selection (Hardcover): Mahlet G. Tadesse, Marina Vannucci Handbook of Bayesian Variable Selection (Hardcover)
Mahlet G. Tadesse, Marina Vannucci
R4,670 Discovery Miles 46 700 Ships in 10 - 15 working days

* Provides a comprehensive review of methods and applications of Bayesian variable selection. * Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. * Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. * Includes contributions by experts in the field.

Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.): Takayuki Hibi Groebner Bases - Statistics and Software Systems (Hardcover, 2013 ed.)
Takayuki Hibi
R3,657 R2,157 Discovery Miles 21 570 Save R1,500 (41%) Ships in 10 - 15 working days

The idea of the Grobner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Grobner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Grobner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Grobner basis. Since then, rapid development on the Grobner basis has been achieved by many researchers, including Bernd Sturmfels.

This book serves as a standard bible of the Grobner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC s of the Grobner basis, requiring no special knowledgeto understand those basic points.

Starting from the introductory performance of the Grobner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Grobner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Grobner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Grobner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Grobner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems."

Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover): Pankaj Barah, Dhruba Kumar... Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover)
Pankaj Barah, Dhruba Kumar Bhattacharyya, Jugal Kumar Kalita
R4,094 Discovery Miles 40 940 Ships in 10 - 15 working days

An introduction to the Central Dogma of molecular biology and information flow in biological systems. A systematic overview of the methods for generating gene expression data. Background knowledge on statistical modeling and machine learning techniques. Detailed methodology of analyzing gene expression data with an example case study. Clustering methods for finding co-expression patterns from microarray, bulkRNA and scRNA data. A large number of practical tools, systems and repositories that are useful for computational biologists to create, analyze and validate biologically relevant gene expression patterns. Suitable for multi-disciplinary researchers and practitioners in computer science and biological sciences.

R for SAS and SPSS Users (Hardcover, 2nd ed. 2011): Robert A. Muenchen R for SAS and SPSS Users (Hardcover, 2nd ed. 2011)
Robert A. Muenchen
R4,385 Discovery Miles 43 850 Ships in 10 - 15 working days

R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.

Optimal Covariate Designs - Theory and Applications (Hardcover, 1st ed. 2015): Premadhis Das, Ganesh Dutta, Nripes Kumar... Optimal Covariate Designs - Theory and Applications (Hardcover, 1st ed. 2015)
Premadhis Das, Ganesh Dutta, Nripes Kumar Mandal, Bikas Kumar Sinha
R2,787 R1,886 Discovery Miles 18 860 Save R901 (32%) Ships in 10 - 15 working days

This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for the construction of optimum designs using Hadamard matrices, the Kronecker product, Rao-Khatri product, mixed orthogonal arrays to name a few.

Computational Finance - An Introductory Course with R (Hardcover, 2014 ed.): Argimiro Arratia Computational Finance - An Introductory Course with R (Hardcover, 2014 ed.)
Argimiro Arratia
R2,253 Discovery Miles 22 530 Ships in 10 - 15 working days

The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to computeare alsodescribed."

Time Series Analysis and Forecasting - Selected Contributions from ITISE 2017 (Hardcover, 1st ed. 2018): Ignacio Rojas, Hector... Time Series Analysis and Forecasting - Selected Contributions from ITISE 2017 (Hardcover, 1st ed. 2018)
Ignacio Rojas, Hector Pomares, Olga Valenzuela
R4,056 Discovery Miles 40 560 Ships in 18 - 22 working days

This book presents selected peer-reviewed contributions from the International Work-Conference on Time Series, ITISE 2017, held in Granada, Spain, September 18-20, 2017. It discusses topics in time series analysis and forecasting, including advanced mathematical methodology, computational intelligence methods for time series, dimensionality reduction and similarity measures, econometric models, energy time series forecasting, forecasting in real problems, online learning in time series as well as high-dimensional and complex/big data time series. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing computer science, mathematics, statistics and econometrics.

MATLAB (R) by Example - Programming Basics (Hardcover, New): Munther Gdeisat, Francis Lilley MATLAB (R) by Example - Programming Basics (Hardcover, New)
Munther Gdeisat, Francis Lilley
R1,579 Discovery Miles 15 790 Ships in 10 - 15 working days

"MATLAB By Example" guides the reader through each step of writing MATLAB programs. The book assumes no previous programming experience on the part of the reader, and uses multiple examples in clear language to introduce concepts and practical tools. Straightforward and detailed instructions allow beginners to learn and develop their MATLAB skills quickly.

The book consists of ten chapters, discussing in detail the integrated development environment (IDE), scalars, vectors, arrays, adopting structured programming style using functions and recursive functions, control flow, debugging, profiling, and structures. A chapter also describes Symbolic Math Toolbox, teaching readers how to solve algebraic equations, differentiation, integration, differential equations, and Laplace and Fourier transforms. Containing hundreds of examples illustrated using screen shots, hundreds of exercises, and three projects, this book can be used to complement coursework or as a self-study book, and can be used as a textbook in universities, colleges and high schools.
No programming experience necessary to learn MATLABExamples with screenshots and plentiful exercises throughout help make MATLAB easy to understandProjects enable readers to write long MATLAB programs, and take the first step toward being a professional MATLAB programmer

Using R for Bayesian Spatial and Spatio-Temporal Health Modeling (Hardcover): Andrew B. Lawson Using R for Bayesian Spatial and Spatio-Temporal Health Modeling (Hardcover)
Andrew B. Lawson
R3,790 Discovery Miles 37 900 Ships in 10 - 15 working days

Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies. Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBAyes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.

Engineering Production-Grade Shiny Apps (Hardcover): Colin Fay, Sebastien Rochette, Vincent Guyader, Cervan Girard Engineering Production-Grade Shiny Apps (Hardcover)
Colin Fay, Sebastien Rochette, Vincent Guyader, Cervan Girard
R4,238 Discovery Miles 42 380 Ships in 10 - 15 working days

Focused on practical matters: this book will not cover Shiny concepts, but practical tools and methodologies to use for production. Based on experience: this book will be a formalization of several years of experience building Shiny applications. Original content: this book will present new methodology and tooling, not just do a review of what already exists.

Javascript for R (Hardcover): John Coene Javascript for R (Hardcover)
John Coene
R3,796 Discovery Miles 37 960 Ships in 10 - 15 working days

Little known to many, R works just as well with JavaScript-this book delves into the various ways both languages can work together. The ultimate aim of this work is to put the reader at ease with inviting JavaScript in their data science workflow. In that respect the book is not teaching one JavaScript but rather we show how little JavaScript can greatly support and enhance R code. Therefore, the focus is on integrating external JavaScript libraries and no prior knowledge of JavaScript is required. Key Features: Easy to pick up. An entry way to learning JavaScript for R. Covers topics not covered anywhere else. Easy to follow along.

SAS for Forecasting Time Series, Third Edition (Hardcover, 3rd ed.): John C. Brocklebank, David A Dickey, Bong Choi SAS for Forecasting Time Series, Third Edition (Hardcover, 3rd ed.)
John C. Brocklebank, David A Dickey, Bong Choi
R2,647 Discovery Miles 26 470 Ships in 18 - 22 working days
Statistical Trend Analysis of Physically Unclonable Functions - An Approach via Text Mining (Hardcover): Behrouz Zolfaghari,... Statistical Trend Analysis of Physically Unclonable Functions - An Approach via Text Mining (Hardcover)
Behrouz Zolfaghari, Khodakhast Bibak, Takeshi Koshiba, Hamid R. Nemati, Pinaki Mitra
R1,513 Discovery Miles 15 130 Ships in 10 - 15 working days

Physically Unclonable Functions (PUFs) translate unavoidable variations in certain parameters of materials, waves, or devices into random and unique signals. They have found many applications in the Internet of Things (IoT), authentication systems, FPGA industry, several other areas in communications and related technologies, and many commercial products. Statistical Trend Analysis of Physically Unclonable Functions first presents a review on cryptographic hardware and hardware-assisted cryptography. The review highlights PUF as a mega trend in research on cryptographic hardware design. Afterwards, the authors present a combined survey and research work on PUFs using a systematic approach. As part of the survey aspect, a state-of-the-art analysis is presented as well as a taxonomy on PUFs, a life cycle, and an established ecosystem for the technology. In another part of the survey, the evolutionary history of PUFs is examined, and strategies for further research in this area are suggested. In the research side, this book presents a novel approach for trend analysis that can be applied to any technology or research area. In this method, a text mining tool is used which extracts 1020 keywords from the titles of the sample papers. Then, a classifying tool classifies the keywords into 295 meaningful research topics. The popularity of each topic is then numerically measured and analyzed over the course of time through a statistical analysis on the number of research papers related to the topic as well as the number of their citations. The authors identify the most popular topics in four different domains; over the history of PUFs, during the recent years, in top conferences, and in top journals. The results are used to present an evolution study as well as a trend analysis and develop a roadmap for future research in this area. This method gives an automatic popularity-based statistical trend analysis which eliminates the need for passing personal judgments about the direction of trends, and provides concrete evidence to the future direction of research on PUFs. Another advantage of this method is the possibility of studying a whole lot of existing research works (more than 700 in this book). This book will appeal to researchers in text mining, cryptography, hardware security, and IoT.

Practical Numerical Mathematics With Matlab: A Workbook (Hardcover): Myron Mike Sussman Practical Numerical Mathematics With Matlab: A Workbook (Hardcover)
Myron Mike Sussman
R2,865 Discovery Miles 28 650 Ships in 18 - 22 working days

This workbook and solutions manual is intended for advanced undergraduate or beginning graduate students as a supplement to a traditional course in numerical mathematics and as preparation for independent research involving numerical mathematics. The solutions manual provides complete MATLAB code and numerical results for each of the exercises in the workbook and will be especially useful for those students without previous MATLAB programming experience. It is also valuable for classroom instructors to help pinpoint the author's intent in each exercise and to provide a model for graders. Upon completion of this material, students will have a working knowledge of MATLAB programming, they will have themselves programmed algorithms encountered in classwork and textbooks, and they will know how to check and verify their own programs against hand calculations and by reference to theoretical results, special polynomial solutions and other specialized solutions. No previous programming experience with MATLAB is necessary.

Practical Numerical Mathematics With Matlab: A Workbook (Paperback): Myron Mike Sussman Practical Numerical Mathematics With Matlab: A Workbook (Paperback)
Myron Mike Sussman
R1,733 Discovery Miles 17 330 Ships in 18 - 22 working days

This workbook and solutions manual is intended for advanced undergraduate or beginning graduate students as a supplement to a traditional course in numerical mathematics and as preparation for independent research involving numerical mathematics. The solutions manual provides complete MATLAB code and numerical results for each of the exercises in the workbook and will be especially useful for those students without previous MATLAB programming experience. It is also valuable for classroom instructors to help pinpoint the author's intent in each exercise and to provide a model for graders. Upon completion of this material, students will have a working knowledge of MATLAB programming, they will have themselves programmed algorithms encountered in classwork and textbooks, and they will know how to check and verify their own programs against hand calculations and by reference to theoretical results, special polynomial solutions and other specialized solutions. No previous programming experience with MATLAB is necessary.

Javascript for R (Paperback): John Coene Javascript for R (Paperback)
John Coene
R1,624 Discovery Miles 16 240 Ships in 10 - 15 working days

Little known to many, R works just as well with JavaScript-this book delves into the various ways both languages can work together. The ultimate aim of this work is to put the reader at ease with inviting JavaScript in their data science workflow. In that respect the book is not teaching one JavaScript but rather we show how little JavaScript can greatly support and enhance R code. Therefore, the focus is on integrating external JavaScript libraries and no prior knowledge of JavaScript is required. Key Features: Easy to pick up. An entry way to learning JavaScript for R. Covers topics not covered anywhere else. Easy to follow along.

Fundamentals of Data Analytics - With a View to Machine Learning (Hardcover, 1st ed. 2020): Rudolf Mathar, Gholamreza... Fundamentals of Data Analytics - With a View to Machine Learning (Hardcover, 1st ed. 2020)
Rudolf Mathar, Gholamreza Alirezaei, Emilio Balda, Arash Behboodi
R2,427 Discovery Miles 24 270 Ships in 18 - 22 working days

This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.

Linear Models with Python (Hardcover): Julian J. Faraway Linear Models with Python (Hardcover)
Julian J. Faraway
R2,667 Discovery Miles 26 670 Ships in 10 - 15 working days

This version replaces R with Python to make it accessible to a greater number of users outside of statistics including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners.

Graphics for Statistics and Data Analysis with R - Graphics for Statistics and Data Analysis with R (Paperback, 2nd edition):... Graphics for Statistics and Data Analysis with R - Graphics for Statistics and Data Analysis with R (Paperback, 2nd edition)
Kevin J. Keen
R1,546 Discovery Miles 15 460 Ships in 10 - 15 working days

Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers' understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang, Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.

Mathematica by Example (Paperback, 6th edition): Martha L. Abell, James P. Braselton Mathematica by Example (Paperback, 6th edition)
Martha L. Abell, James P. Braselton
R2,326 Discovery Miles 23 260 Ships in 10 - 15 working days

Mathematica by Example, Sixth Edition is an essential resource for the Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the changes to functionality and visualization capabilities and accomodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers, and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications and subject areas.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Introduction to Chemical Engineering…
Henry C. Foley Paperback R3,120 Discovery Miles 31 200
An Introduction to Creating Standardized…
Todd Case, Yuting Tian Hardcover R1,501 Discovery Miles 15 010
Predictive Modeling with SAS Enterprise…
Kattamuri S Sarma Hardcover R2,338 Discovery Miles 23 380
The Global English Style Guide - Writing…
John R Kohl Hardcover R1,912 Discovery Miles 19 120
Essential Java for Scientists and…
Brian Hahn, Katherine Malan Paperback R1,266 Discovery Miles 12 660
JMP Essentials - An Illustrated Guide…
Curt Hinrichs, Chuck Boiler, … Hardcover R2,063 Discovery Miles 20 630
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R11,427 Discovery Miles 114 270
Deep Learning for Numerical Applications…
Henry Bequet Hardcover R2,405 Discovery Miles 24 050
SAS Certified Professional Prep Guide…
Sas Institute Hardcover R3,329 Discovery Miles 33 290
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas Hardcover R1,530 Discovery Miles 15 300

 

Partners