0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (14)
  • R250 - R500 (32)
  • R500+ (1,431)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Graphics of Large Datasets - Visualizing a Million (Hardcover, 2006 ed.): Antony Unwin, Martin Theus, Heike Hofmann Graphics of Large Datasets - Visualizing a Million (Hardcover, 2006 ed.)
Antony Unwin, Martin Theus, Heike Hofmann
R2,890 Discovery Miles 28 900 Ships in 10 - 15 working days

Graphics are great for exploring data, but how can they be used for looking at the large datasets that are commonplace to-day? This book shows how to look at ways of visualizing large datasets, whether large in numbers of cases or large in numbers of variables or large in both. Data visualization is useful for data cleaning, exploring data, identifying trends and clusters, spotting local patterns, evaluating modeling output, and presenting results. It is essential for exploratory data analysis and data mining. Data analysts, statisticians, computer scientists-indeed anyone who has to explore a large dataset of their own-should benefit from reading this book.

New approaches to graphics are needed to visualize the information in large datasets and most of the innovations described in this book are developments of standard graphics. There are considerable advantages in extending displays which are well-known and well-tried, both in understanding how best to make use of them in your work and in presenting results to others. It should also make the book readily accessible for readers who already have a little experience of drawing statistical graphics. All ideas are illustrated with displays from analyses of real datasets and the authors emphasize the importance of interpreting displays effectively. Graphics should be drawn to convey information and the book includes many insightful examples.

From the reviews:

"Anyone interested in modern techniques for visualizing data will be well rewarded by reading this book. There is a wealth of important plotting types and techniques." Paul Murrell for the Journal of Statistical Software, December 2006

"This fascinating book looks at the question of visualizing large datasets from many different perspectives. Different authors are responsible for different chapters and this approach works well in giving the reader alternative viewpoints of the same problem. Interestingly the authors have cleverly chosen a definition of 'large dataset'. Essentially they focus on datasets with the order of a million cases. As the authors point out there are now many examples of much larger datasets but by limiting to ones that can be loaded in their entirety in standard statistical software they end up with a book that has great utility to the practitioner rather than just the theorist. Another very attractive feature of the book is the many colour plates, showing clearly what can now routinely be seen on the computer screen. The interactive nature of data analysis with large datasets is hard to reproduce in a book but the authors make an excellent attempt to do just this." P. Marriott for the Short Book Reviews of the ISI

Encyclopedia of Robust Control: Volume III (Design Methods) (Hardcover): Zac Fredericks Encyclopedia of Robust Control: Volume III (Design Methods) (Hardcover)
Zac Fredericks
R1,818 Discovery Miles 18 180 Ships in 12 - 17 working days
How to Find a Needle in a Haystack - From the Insider Threat to Solo Perpetrators (Hardcover): Yair Neuman How to Find a Needle in a Haystack - From the Insider Threat to Solo Perpetrators (Hardcover)
Yair Neuman
R1,488 Discovery Miles 14 880 Ships in 12 - 17 working days

By the end of this book, the reader will understand: the difficulties of finding a needle in a haystack; creative solutions to address the problem; unique ways of engineering features and solving the problem of the lack of data (e.g. synthetic data). Additionally, the reader will be able to: avoid mistakes resulting from a lack of understanding; search for appropriate methods of feature engineering; locate the relevant technological solutions within the general context of decision-making.

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (Hardcover, 2nd ed. 2013): Uffe B. Kjaerulff,... Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (Hardcover, 2nd ed. 2013)
Uffe B. Kjaerulff, Anders L. Madsen
R3,648 R2,415 Discovery Miles 24 150 Save R1,233 (34%) Ships in 12 - 17 working days

"Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, "provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide. "

Essential Java for Scientists and Engineers (Paperback): Brian Hahn, Katherine Malan Essential Java for Scientists and Engineers (Paperback)
Brian Hahn, Katherine Malan
R1,268 Discovery Miles 12 680 Ships in 12 - 17 working days

Essential Java serves as an introduction to the programming language, Java, for scientists and engineers, and can also be used by experienced programmers wishing to learn Java as an additional language. The book focuses on how Java, and object-oriented programming, can be used to solve science and engineering problems.
Many examples are included from a number of different scientific and engineering areas, as well as from business and everyday life. Pre-written packages of code are provided to help in such areas as input/output, matrix manipulation and scientific graphing.
Java source code and solutions to selected exercises are available at: www.bh.com/companions/0750659912
A free solutions manual is available to lecturers at: http: //textbooks.elsevier.com
* Takes a 'dive-in' approach, getting the reader writing and running programs immediately
* Teaches object-oriented programming for problem-solving in engineering and science
* Fully supported with online resources and listings to download

SPSS Statistics For Dummies, 4th Edition (Paperback, 4th Edition): J Salcedo SPSS Statistics For Dummies, 4th Edition (Paperback, 4th Edition)
J Salcedo
R704 Discovery Miles 7 040 Ships in 12 - 17 working days

The fun and friendly guide to mastering IBM's Statistical Package for the Social Sciences Written by an author team with a combined 55 years of experience using SPSS, this updated guide takes the guesswork out of the subject and helps you get the most out of using the leader in predictive analysis. Covering the latest release and updates to SPSS 27.0, and including more than 150 pages of basic statistical theory, it helps you understand the mechanics behind the calculations, perform predictive analysis, produce informative graphs, and more. You'll even dabble in programming as you expand SPSS functionality to suit your specific needs. Master the fundamental mechanics of SPSS Learn how to get data into and out of the program Graph and analyze your data more accurately and efficiently Program SPSS with Command Syntax Get ready to start handling data like a pro--with step-by-step instruction and expert advice!

Introduction to Time Series Modeling with Applications in R - with Applications in R (Paperback, 2nd edition): Genshiro Kitagawa Introduction to Time Series Modeling with Applications in R - with Applications in R (Paperback, 2nd edition)
Genshiro Kitagawa
R1,418 Discovery Miles 14 180 Ships in 12 - 17 working days

Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. -Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. -MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Optimization Modelling Using R (Hardcover): Timothy R. Anderson Optimization Modelling Using R (Hardcover)
Timothy R. Anderson
R2,546 Discovery Miles 25 460 Ships in 12 - 17 working days

This book covers using R for doing optimization, a key area of operations research, which has been applied to virtually every industry. The focus is on linear and mixed integer optimization. It uses an algebraic modeling approach for creating formulations that pairs naturally with an algebraic implementation in R. With the rapid rise of interest in data analytics, a data analytics platform is key. Working technology and business professionals need an awareness of the tools and language of data analysis. R reduces the barrier to entry for people to start using data analytics tools. Philosophically, the book emphasizes creating formulations before going into implementation. Algebraic representation allows for clear understanding and generalization of large applications, and writing formulations is necessary to explain and convey the modeling decisions made. Appendix A introduces R. Mathematics is used at the level of subscripts and summations Refreshers are provided in Appendix B. This book: * Provides and explains code so examples are relatively clear and self-contained. * Emphasizes creating algebraic formulations before implementing. * Focuses on application rather than algorithmic details. * Embodies the philosophy of reproducible research. * Uses open-source tools to ensure access to powerful optimization tools. * Promotes open-source: all materials are available on the author's github repository. * Demonstrates common debugging practices with a troubleshooting emphasis specific to optimization modeling using R. * Provides code readers can adapt to their own applications . This book can be used for graduate and undergraduate courses for students without a background in optimization and with varying mathematical backgrounds.

An Introduction to Sequential Monte Carlo (Hardcover, 1st ed. 2020): Nicolas Chopin, Omiros Papaspiliopoulos An Introduction to Sequential Monte Carlo (Hardcover, 1st ed. 2020)
Nicolas Chopin, Omiros Papaspiliopoulos
R2,582 Discovery Miles 25 820 Ships in 12 - 17 working days

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a "Python corner," which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback): Keith Mcnulty Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Paperback)
Keith Mcnulty
R2,081 Discovery Miles 20 810 Ships in 12 - 17 working days

Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Hardcover): Keith Mcnulty Handbook of Graphs and Networks in People Analytics - With Examples in R and Python (Hardcover)
Keith Mcnulty
R5,133 Discovery Miles 51 330 Ships in 12 - 17 working days

Immediately implementable code, with extensive and varied illustrations of graph variants and layouts. Examples and exercises across a variety of real-life contexts including business, politics, education, social media and crime investigation. Dedicated chapter on graph visualization methods. Practical walkthroughs of common methodological uses: finding influential actors in groups, discovering hidden community structures, facilitating diverse interaction in organizations, detecting political alignment, determining what influences connection and attachment. Various downloadable data sets for use both in class and individual learning projects. Final chapter dedicated to individual or group project examples.

Outlier Analysis (Hardcover, 2nd ed. 2017): Charu C. Aggarwal Outlier Analysis (Hardcover, 2nd ed. 2017)
Charu C. Aggarwal
R1,971 R1,786 Discovery Miles 17 860 Save R185 (9%) Ships in 12 - 17 working days

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via... Algorithmic Decision Making with Python Resources - From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs (Hardcover, 1st ed. 2022)
Raymond Bisdorff
R3,072 Discovery Miles 30 720 Ships in 12 - 17 working days

This book describes Python3 programming resources for implementing decision aiding algorithms in the context of a bipolar-valued outranking approach. These computing resources, made available under the name Digraph3, are useful in the field of Algorithmic Decision Theory and more specifically in outranking-based Multiple-Criteria Decision Aiding (MCDA). The first part of the book presents a set of tutorials introducing the Digraph3 collection of Python3 modules and its main objects, such as bipolar-valued digraphs and outranking digraphs. In eight methodological chapters, the second part illustrates multiple-criteria evaluation models and decision algorithms. These chapters are largely problem-oriented and demonstrate how to edit a new multiple-criteria performance tableau, how to build a best choice recommendation, how to compute the winner of an election and how to make rankings or ratings using incommensurable criteria. The book's third part presents three real-world decision case studies, while the fourth part addresses more advanced topics, such as computing ordinal correlations between bipolar-valued outranking digraphs, computing kernels in bipolar-valued digraphs, testing for confidence or stability of outranking statements when facing uncertain or solely ordinal criteria significance weights, and tempering plurality tyranny effects in social choice problems. The fifth and last part is more specifically focused on working with undirected graphs, tree graphs and forests. The closing chapter explores comparability, split, interval and permutation graphs. The book is primarily intended for graduate students in management sciences, computational statistics and operations research. The chapters presenting algorithms for ranking multicriteria performance records will be of computational interest for designers of web recommender systems. Similarly, the relative and absolute quantile-rating algorithms, discussed and illustrated in several chapters, will be of practical interest to public and private performance auditors.

Encyclopedia of Robust Control: Volume II (Novel Approaches) (Hardcover): Zac Fredericks Encyclopedia of Robust Control: Volume II (Novel Approaches) (Hardcover)
Zac Fredericks
R2,142 Discovery Miles 21 420 Ships in 12 - 17 working days
Modelling Organs, Tissues, Cells and Devices - Using MATLAB and COMSOL Multiphysics (Hardcover, 1st ed. 2017): Socrates Dokos Modelling Organs, Tissues, Cells and Devices - Using MATLAB and COMSOL Multiphysics (Hardcover, 1st ed. 2017)
Socrates Dokos
R7,307 Discovery Miles 73 070 Ships in 12 - 17 working days

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

Spatial Predictive Modeling with R (Hardcover): Jin Li Spatial Predictive Modeling with R (Hardcover)
Jin Li
R3,156 Discovery Miles 31 560 Ships in 12 - 17 working days

*Systematically introducing major components of SPM process. *Novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods. *Novel predictive accuracy-based variable selection techniques for spatial predictive methods. *Predictive accuracy-based parameter/model optimization. *Reproducible examples for SPM of various data types in R.

Text Analysis with R - For Students of Literature (Hardcover, 2nd ed. 2020): Matthew L. Jockers, Rosamond Thalken Text Analysis with R - For Students of Literature (Hardcover, 2nd ed. 2020)
Matthew L. Jockers, Rosamond Thalken
R2,242 Discovery Miles 22 420 Ships in 12 - 17 working days

Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale "microanalysis" of single texts to large scale "macroanalysis" of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book's focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.

Educational Measurement for Applied Researchers - Theory into Practice (Hardcover, 1st ed. 2016): Margaret Wu, Hak Ping Tam,... Educational Measurement for Applied Researchers - Theory into Practice (Hardcover, 1st ed. 2016)
Margaret Wu, Hak Ping Tam, Tsung-Hau Jen
R4,131 Discovery Miles 41 310 Ships in 12 - 17 working days

This book is a valuable read for a diverse group of researchers and practitioners who analyze assessment data and construct test instruments. It focuses on the use of classical test theory (CTT) and item response theory (IRT), which are often required in the fields of psychology (e.g. for measuring psychological traits), health (e.g. for measuring the severity of disorders), and education (e.g. for measuring student performance), and makes these analytical tools accessible to a broader audience. Having taught assessment subjects to students from diverse backgrounds for a number of years, the three authors have a wealth of experience in presenting educational measurement topics, in-depth concepts and applications in an accessible format. As such, the book addresses the needs of readers who use CTT and IRT in their work but do not necessarily have an extensive mathematical background. The book also sheds light on common misconceptions in applying measurement models, and presents an integrated approach to different measurement methods, such as contrasting CTT with IRT and multidimensional IRT models with unidimensional IRT models. Wherever possible, comparisons between models are explicitly made. In addition, the book discusses concepts for test equating and differential item functioning, as well as Bayesian IRT models and plausible values using simple examples. This book can serve as a textbook for introductory courses on educational measurement, as supplementary reading for advanced courses, or as a valuable reference guide for researchers interested in analyzing student assessment data.

JMP Start Statistics - A Guide to Statistics and Data Analysis Using JMP, Sixth Edition (Hardcover, 6th ed.): John Sall, Mia L.... JMP Start Statistics - A Guide to Statistics and Data Analysis Using JMP, Sixth Edition (Hardcover, 6th ed.)
John Sall, Mia L. Stephens, Ann Lehman
R3,151 Discovery Miles 31 510 Ships in 12 - 17 working days
Handbook of Bayesian Variable Selection (Hardcover): Mahlet G. Tadesse, Marina Vannucci Handbook of Bayesian Variable Selection (Hardcover)
Mahlet G. Tadesse, Marina Vannucci
R4,592 Discovery Miles 45 920 Ships in 12 - 17 working days

* Provides a comprehensive review of methods and applications of Bayesian variable selection. * Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. * Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. * Includes contributions by experts in the field.

MATLAB for Psychologists (Hardcover, 2012): Mauro Borgo, Alessandro Soranzo, Massimo Grassi MATLAB for Psychologists (Hardcover, 2012)
Mauro Borgo, Alessandro Soranzo, Massimo Grassi
R2,401 Discovery Miles 24 010 Ships in 10 - 15 working days

The matrix laboratory interactive computing environment--MATLAB--has brought creativity to research in diverse disciplines, particularly in designing and programming experiments. More commonly used in mathematics and the sciences, it also lends itself to a variety of applications across the field of psychology. For the novice looking to use it in experimental psychology research, though, becoming familiar with MATLAB can be a daunting task. MATLAB for Psychologists expertly guides readers through the component steps, skills, and operations of the software, with plentiful graphics and examples to match the reader's comfort level. Using an extended illustration, this concise volume explains the program's usefulness at any point in an experiment, without the limits imposed by other types of software. And the authors demonstrate the responsiveness of MATLAB to the individual's research needs, whether the task is programming experiments, creating sensory stimuli, running simulations, calculating statistics, or biosignal processing. Key features of the coverage: Thinking in a matrix way.Handling and plotting data.Guidelines for improved programming, sound, and imaging.Statistical analysis and signal detection theory indexes. The Graphical User Interface.The Psychophysics Toolbox.MATLAB for Psychologists serves a wide audience of advanced undergraduate and graduate level psychology students, professors, and researchers, as well as lab technicians involved in programming psychology experiments.

R Visualizations - Derive Meaning from Data (Paperback): David Gerbing R Visualizations - Derive Meaning from Data (Paperback)
David Gerbing
R1,255 Discovery Miles 12 550 Ships in 12 - 17 working days

R Visualizations: Derive Meaning from Data focuses on one of the two major topics of data analytics: data visualization, a.k.a., computer graphics. In the book, major R systems for visualization are discussed, organized by topic and not by system. Anyone doing data analysis will be shown how to use R to generate any of the basic visualizations with the R visualization systems. Further, this book introduces the author's lessR system, which always can accomplish a visualization with less coding than the use of other systems, sometimes dramatically so, and also provides accompanying statistical analyses. Key Features Presents thorough coverage of the leading R visualization system, ggplot2. Gives specific guidance on using base R graphics to attain visualizations of the same quality as those provided by ggplot2. Shows how to create a wide range of data visualizations: distributions of categorical and continuous variables, many types of scatterplots including with a third variable, time series, and maps. Inclusion of the various approaches to R graphics organized by topic instead of by system. Presents the recent work on interactive visualization in R. David W. Gerbing received his PhD from Michigan State University in 1979 in quantitative analysis, and currently is a professor of quantitative analysis in the School of Business at Portland State University. He has published extensively in the social and behavioral sciences with a focus on quantitative methods. His lessR package has been in development since 2009.

Behavior Analysis with Machine Learning Using R (Hardcover): Enrique Garcia Ceja Behavior Analysis with Machine Learning Using R (Hardcover)
Enrique Garcia Ceja
R2,576 Discovery Miles 25 760 Ships in 12 - 17 working days

Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial. Features: Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on. Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources. Use unsupervised learning algorithms to discover criminal behavioral patterns. Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images. Evaluate the performance of your models in traditional and multi-user settings. Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors. This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.

Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover): Pankaj Barah, Dhruba Kumar... Gene Expression Data Analysis - A Statistical and Machine Learning Perspective (Hardcover)
Pankaj Barah, Dhruba Kumar Bhattacharyya, Jugal Kumar Kalita
R4,005 Discovery Miles 40 050 Ships in 12 - 17 working days

An introduction to the Central Dogma of molecular biology and information flow in biological systems. A systematic overview of the methods for generating gene expression data. Background knowledge on statistical modeling and machine learning techniques. Detailed methodology of analyzing gene expression data with an example case study. Clustering methods for finding co-expression patterns from microarray, bulkRNA and scRNA data. A large number of practical tools, systems and repositories that are useful for computational biologists to create, analyze and validate biologically relevant gene expression patterns. Suitable for multi-disciplinary researchers and practitioners in computer science and biological sciences.

Handbook of Multiple Comparisons (Hardcover): Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu Handbook of Multiple Comparisons (Hardcover)
Xinping Cui, Thorsten Dickhaus, Ying Ding, Jason C Hsu
R6,309 Discovery Miles 63 090 Ships in 12 - 17 working days

Coherent treatment of a variety of approaches to multiple comparisons Broad coverage of topics, with contributions by internationally leading experts Detailed treatment of applications in medicine and life sciences Suitable for researchers, lecturers / students, and practitioners

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Global English Style Guide - Writing…
John R Kohl Hardcover R2,049 Discovery Miles 20 490
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas Hardcover R1,613 Discovery Miles 16 130
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland Hardcover R2,922 Discovery Miles 29 220
SAS Certified Specialist Prep Guide…
Sas Institute Hardcover R3,301 Discovery Miles 33 010
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R12,404 Discovery Miles 124 040
Statistical Regression Modeling with R…
Ding-Geng (Din) Chen, Jenny K. Chen Hardcover R3,370 Discovery Miles 33 700
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,707 Discovery Miles 17 070
Higher Education 4.0 - The Digital…
Kevin Anthony Jones, Sharma Ravishankar Hardcover R4,378 Discovery Miles 43 780
SAS Certified Professional Prep Guide…
Sas Institute Hardcover R3,600 Discovery Miles 36 000
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, … Hardcover R2,644 Discovery Miles 26 440

 

Partners