![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
The formalism processing of unbuckled solids mechanics involves several mathematical tools which are to be mastered at the same time. This volume collects the main points which take place in the course of the formalism, so that the user immediately finds what he needs without looking for it. Furthermore, the book contains a methodological formulary to guide the user in his approach.
A virtual sound barrier is an active noise control system that uses arrays of loudspeakers and microphones to create a useful size of quiet zone and can be used to reduce sound propagation, radiation, or transmission from noise sources or to reduce noise level around people in a noisy environment. This book introduces the history, principle, and design methods of virtual sound barriers first, and then describes recent progress in research on the systems. Two virtual sound barrier systems, i.e., planar virtual sound barrier system and three-dimensional virtual sound barrier system, are discussed including applications, limitations and future direction discussions.
This major textbook provides comprehensive coverage of the analytical tools required to determine the dynamic response of structures. The topics covered include: formulation of the equations of motion for single- as well as multi-degree-of-freedom discrete systems using the principles of both vector mechanics and analytical mechanics; free vibration response; determination of frequencies and mode shapes; forced vibration response to harmonic and general forcing functions; dynamic analysis of continuous systems;and wave propagation analysis. The key assets of the book include comprehensive coverage of both the traditional and state-of-the-art numerical techniques of response analysis, such as the analysis by numerical integration of the equations of motion and analysis through frequency domain. The large number of illustrative examples and exercise problems are of great assistance in improving clarity and enhancing reader comprehension. The text aims to benefit students and engineers in the civil, mechanical and aerospace sectors.
Metal fatigue is an essential consideration for engineers and researchers who are looking at factors that cause metals to fail through stress, corrosion, etc. This is an English translation of a book originally published in Japan in 1993, with an additional two chapters on the fatigue failure of steels and the effect of surface roughness on fatigue strength. The methodology is based on important and reliable results and may be usefully applied to other fatigue problems not directly treated in this book.
This book provides structural reliability and design students with fundamental knowledge in structural reliability, as well as an overview of the latest developments in the field of reliability engineering. It addresses the mathematical formulation of analytical tools for structural reliability assessment. This book offers an accessible introduction to structural reliability assessment and a solid foundation for problem-solving. It introduces the topic and background, before dealing with probability models for random variables. It then explores simulation techniques for single random variables, random vectors consisting of different variables, and stochastic processes. The book addresses analytical approaches for structural reliability assessment, including the reliability models for a single structure and those for multiple structures, as well as discussing the approaches for structural time-dependent reliability assessment in the presence of discrete and continuous load processes. This book delivers a timely and pedagogical textbook, including over 170 worked-through examples, detailed solutions, and analytical tools, making it of interest to a wide range of graduate students, researchers, and practitioners in the field of reliability engineering.
Understanding the elastoplastic deformation of metals and geomaterials, including the constitutive description of the materials and analysis of structure undergoing plastic deformation, is an essential part of the background required by mechanical, civil, and geotechnical engineers as well as materials scientists. However, most books address the subject at a introductory level and within the infinitesimal strain context.
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
This work contains proceedings of a workshop on Bifurcation and Localisation Theory in Geomechanics, held in Perth, Australia in 1999. It covers a range of themes from classic civil engineering subjects to non-linear and non-unique geological phenomena.
This book contains the proceedings of EXPLOMET(TM) 2000, International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, held in Albuquerque, New Mexico, 2000; the fifth in the EXPLOMET(TM) quinquennial series which began in Albuquerque in 1980. The book is divided into five major sections with a total of 85 chapters. Section I deals with materials issues in shock and high strain rates while Section II covers shock consolidation, reactions, and synthesis. Materials aspects of ballistic and hypervelocity impact are covered in Section III followed by modeling and simulation in Section IV and a range of novel applications of shock and high-strain-rate phenomena in Section V. Like previous conference volumes published in 1980, 1985, and 1995, the current volume includes contributions from fourteen countries outside the United States. As a consequence, it is hoped that this book will serve as a global summary of current issues involving shock and high-strain-rate phenomena as well as a general reference and teaching componant for specializd curricula dealing with these features in a contemporary way. Over the past twenty years, the EXPLOMET(TM) Conferences have created a family of participants who not only converse every five years but who have developed long-standing interactions and professional relationships which continue to stimulate new concepts and applications particularly rooted in basic materials behavior.
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
This edition of this well-received engineering text retains the clarity of exposition that made the previous editions so popular, and contains the most widely-used problem sets in the business. Its approach to vibration analysis is clear, concise, and simple, backed up by a wealth of problems and examples. Multi- degree-of-freedom problems are well-prefaced with two-degree-of- freedom cases. There is a special treatment of damping, including non-viscous problems (standard texts make much use of viscous damping, but most practical examples are not viscous). The text now includes an excellent development of Rayleigh's principle and an introduction to finite element vibration analysis. It also contains 100 new problems.
Transfer function form, zpk, state space, modal, and state space modal forms. For someone learning dynamics for the first time or for engineers who use the tools infrequently, the options available for constructing and representing dynamic mechanical models can be daunting. It is important to find a way to put them all in perspective and have them available for quick reference.
Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a comprehensively updated new edition of the popular textbook. It presents the theory of vibrations in the context of structural analysis and covers applications in mechanical and aerospace engineering. Key features include: * A systematic approach to dynamic reduction and substructuring, based on duality between mechanical and admittance concepts * An introduction to experimental modal analysis and identification methods * An improved, more physical presentation of wave propagation phenomena * A comprehensive presentation of current practice for solving large eigenproblems, focusing on the efficient linear solution of large, sparse and possibly singular systems * A deeply revised description of time integration schemes, providing framework for the rigorous accuracy/stability analysis of now widely used algorithms such as HHT and Generalized- * Solved exercises and end of chapter homework problems * A companion website hosting supplementary material
Most books on the theory and analysis of beams and plates deal with
the classical (Euler-Bernoulli/Kirchoff) theories but few include
shear deformation theories in detail. The classical beam/plate
theory is not adequate in providing accurate bending, buckling, and
vibration results when the thickness-to-length ratio of the
beam/plate is relatively large. This is because the effect of
transverse shear strains, neglected in the classical theory,
becomes significant in deep beams and thick plates. This book
illustrates how shear deformation theories provide accurate
solutions compared to the classical theory.
Developments in passive control technology and theory over recent years require a comprehensive new work on the subject, a gap now filled by Passive Vibration Control. In this volume, the divide between the many classical text books on vibration analysis and the few books on specialist aspects of passive control is finally bridged. In addition, the valuable analytical tool of receptance/dynamic stiffness theory is extensively covered. Initially, a review of recent findings on vibration levels which cause structural damage, machine malfunctioning or human disturbance, discomfort and injury is presented. The following four chapters review the theoretical response of structures to imposed forces or motions (which may in turn be harmonic, periodic, random or transient) and aim to advance the reader’s existing knowledge of vibration theory into the theory of receptances and structural modal analysis. This presentation has a two-fold purpose: (a) to enhance physical understanding of theoretical concepts and (b) to identify the principal system parameters which control vibration levels before passive control measures are undertaken. The remaining chapters consider successively the controlling factors in beam and plate vibration and methods of reduction, general structural design principles for minimizing vibration, the control of vibration by localized additions (with special emphasis on dynamics absorbers), and sources of structural damping and damping methods. The use of vibration isolators and, finally, combinations of these methods are also examined, resulting in a text of great value and interest to all vibration control analysts, practitioners, and researchers.
This textbook is the student edition of the work on vibrations, dynamics and structural systems. There are exercises included at the end of each chapter.
The first symposium on Access in Nanoporous Materials was held in
Lansing, Michigan on June 7-9, 1995. The five years that have
passed since that initial meeting have brought remarkable advances
in all aspects of this growing family of materials. In particular,
impressive progress has been achieved in the area of novel
self-assembled mesoporous materials, their synthesis,
characterization and applications. The supramolecular self-assembly
of various inorganic and organic species into ordered
mesostructures became a powerful method for synthesis of mesoporous
molecular sieves of tailored framework composition, pore structure,
pore size and desired surface functionality for advanced
applications in such areas as separation, adsorption, catalysis,
environmental cleanup and nanotechnology. In addition to mesostructured metal oxide molecular sieves
prepared through supramolecular assembly pathways, clays, carbon
molecular sieves, porous polymers, sol-gel and imprinted materials,
as well as self-assembled organic and other zeolite-like materials,
have captured the attention of materials researchers around the
globe. The contents of the current volume present a sampling of more
than 150 oral and poster papers delivered at the Symposium on
Access in Nanoporous Materials II held in Banff, Alberta on May
25-30, 2000. About 70% of the papers are devoted to the synthesis
of siliceous mesoporous molecular sieves, their modification,
characterization and applications, which represent the current
research trend in nanoporous materials. The remaining contributions
provide some indications on the future developments in the area of
non-siliceous molecular sieves and related materials. This book
reflects the current trends and advances in this area, which will
certainly attract the attention of materials chemists in the 21st
century.
Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. "Experimental Mechanics of Solids" is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead authorSystematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methodsIncludes illustrations and diagrams to illuminate the topic clearly for the readerProvides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.
Modern Vibrations Primer provides practicing mechanical engineers with guidance through the computer-based problem solving process. The book illustrates methods for reducing complex engineering problems to manageable, analytical models. It is the first vibrations guide written with a contemporary approach for integration with computers.
These proceedings provide an authoritative source of information in the field of suspension design, vehicle-infrastructure interaction, mechatronics and vehicle control systems for road as well as rail vehicles. The research presented includes modelling and simulation.
The introduction of active control in structural dynamics has led to a number of developments over wide-ranging industrial domains. This work investigates this area and examines a number of topics including: smart materials and structures; new strategies of active control and its applications.
This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.
Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: opreliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue ofatigue crack nucleation, including microstructural and continuous models otheory of fatigue crack propagation ofatigue crack growth in linear elastic materials subject to dispersed damage ofatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation ofatigue and related phenomena in hereditary solids oapplication of the theory fatigue crack growth considering environmental factors ounidirectional fiber composites with ductile matrix and brittle, initially continuous fibers olaminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics ofcomposites, as well as modern branches of mechanics of solids and structures. |
![]() ![]() You may like...
Stability and Stable Oscillations in…
Aristide Halanay, Vladimir Rasvan
Hardcover
R3,726
Discovery Miles 37 260
Migrating Legacy Applications…
Anca Daniela Ionita, Marin Litoiu, …
Hardcover
R5,387
Discovery Miles 53 870
Form Versus Function: Theory and Models…
Mihai Alexandru Petrovici
Hardcover
Technology Ethics - A Philosophical…
Gregory J. Robson, Jonathan Y Tsou
Paperback
R1,293
Discovery Miles 12 930
The Sourcebook of Parallel Computing
Jack Dongarra, Ian Foster, …
Hardcover
R2,109
Discovery Miles 21 090
Minecraft: Blockopedia - Updated Edition
Mojang AB, The Official Minecraft Team
Hardcover
|