![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This volume consists of 14 contributed chapters written by leading experts, offering in-depth discussions of the mathematical modeling and algorithmic aspects for tackling a range of space engineering applications. This book will be of interest to researchers and practitioners working in the field of space engineering. Since it offers an in-depth exposition of the mathematical modelling, algorithmic and numerical solution aspects of the topics covered, the book will also be useful to aerospace engineering graduates and post-graduate students who wish to expand their knowledge by studying real-world applications and challenges that they will encounter in their profession. Readers will obtain a broad overview of some of the most challenging space engineering operational scenarios of today and tomorrow: this will be useful for managers in the aerospace field, as well as in other industrial sectors. The contributed chapters are mainly focused on space engineering practice. Researchers and practitioners in mathematical systems modelling, operations research, optimization, and optimal control will also benefit from the case studies presented in this book. The model development and optimization approaches discussed can be extended towards other application areas that are not directly related to space engineering. Therefore, the book can be a useful reference to assist in the development of new modelling and optimization applications.
This book is a collection of articles covering the six lecture courses given at the CISM School on this topic in 2008. It features contributions by established international experts and offers a coherent and comprehensive overview of the state-of-the art research in the field, thus addressing both postgraduate students and researchers in aerospace, mechanical and civil engineering.
Concrete is still the most widely used construction material since it has the lowest ratio between cost and strength as compared to other available materials. However, it has two undesirable properties, namely: low tensile strength and large brittleness that cause the collapse to occur shortly after the formation of the first crack. To improve these two negative properties and to achieve a partial substitute of conventional reinforcement, an addition of short discontinuous randomly oriented steel fibres can be practiced among others. In spite of positive properties, fibrous concrete did not find such acknowledgment and application as usual concrete. There do not still exist consistent dimensioning rules due to the lack sufficient large-scale static and dynamic experiments taking into account the effect of the fibre orientation. The intention of the book is twofold: first to summarize the most important mechanical and physical properties of steel-fibre-added concrete and reinforced concrete on the basis of numerous experiments described in the scientific literature, and second to describe a quasi-static fracture process at meso-scale both in plain concrete and fibrous concrete using a novel discrete lattice model. In 2D and 3D simulations of fibrous concrete specimens under uniaxial tension, the effect of the fibre volume, fibre distribution, fibre orientation, fibre length, fibrous bond strength and specimen size on both the stress-strain curve and fracture process was carefully analyzed.
This book contains the papers of the European Conference on Mechanisms Science (EUCOMES 2012 Conference). The book presents the most recent research developments in the mechanism and machine science field and their applications. Topics addressed are theoretical kinematics, computational kinematics, mechanism design, experimental mechanics, mechanics of robots, dynamics of machinery, dynamics of multi-body systems, control issues of mechanical systems, mechanisms for biomechanics, novel designs, mechanical transmissions, linkages and manipulators, micro-mechanisms, teaching methods, history of mechanism science and industrial and non-industrial applications. Thisvolumewill also serve as an interestingreference for the European activity in the fields of Mechanism and Machine Science as well as a source of inspirations for future works and developments."
This book presents an isospectral approach for several important mechanical vibrating systems. Discrete and continuous isospectral systems are discussed using a simple multi-degree of freedom spring-mass system followed by illustration of isospectral beams and their solution through evolutionary computing. Next, it addresses axially loaded Euler-Bernoulli beams and aims to find isospectral counterparts of these systems. The practical application of these isospectral systems for vibration testing and for finding new closed form solutions is discussed. A considerable part of the book is devoted to isospectral rotating beams and their non-rotating analogs including Rayleigh beams. Aimed at researchers and graduate students in mechanical; aerospace; civil; automotive; ocean engineering especially mechanical vibrations, this monograph: Discusses isospectral vibrating systems to aid vibration testing and computational analysis Explores isospectral analogs between rotating and non-rotating structures Provides simpler isospectral beams for vibration testing and for 3D printing Uses firefly optimization method and electromagnetism inspired optimization method to find isospectral systems Shows the use of isospectral systems to find new closed form solutions using an indirect approach
For readers with no background in acoustics Takes a unique problem based learning approach, reinforcing basic material with progressively complex example problems with solutions. Carefully up-dates and extended from the first edition Solutions to these additional problems available to instructors on request. Suits practising engineers with no acoustics background addressing noise problems in the workplace.
For readers with no background in acoustics Takes a unique problem based learning approach, reinforcing basic material with progressively complex example problems with solutions. Carefully up-dates and extended from the first edition Solutions to these additional problems available to instructors on request. Suits practising engineers with no acoustics background addressing noise problems in the workplace.
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange center as well as from his research experience in the field of mathematical and computer modeling of dynamic systems. The book presents valuable results concerning their state-space, transfer function and time-domain representations, which can be useful both for the open-loop analysis as well as for the closed-loop design. The book is primarily intended to help professionals as well as undergraduate and postgraduate students involved in modeling and automatic control of dynamic systems.
Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets modern demands.
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems. "
This monograph presents computational models that describe electro-mechanical characteristics of tapered and cylinder roller bearings in various industrial applications. Applying the Levenberg-Marquardt's algorithm to solving strongly nonlinear coupled equation systems, the computational models consisting of many circular slices per rolling element enable computations of the local Hertzian pressures at the elastohydrodynamic (EHD) contact area, the relating oil-film thickness in elastohydrodynamic lubrication (EHL), the limiting voltage of electro-pitting, bearing frictions, and fatigue lifetimes of the bearings for various load spectra. Using the best-known machine-learning method for clustering, the load spectrum is clustered in k cluster means based on the invariant damage number to accelerate the load spectrum. Furthermore, the accelerated load spectrum is used for the testing procedure of the bearings to reduce the testing time and costs as well. The target audience of this book primarily comprises graduate students in mechanical engineering and practicing engineers of electro-machines and transmission systems who want to computationally design tapered and cylinder roller bearings for the automotive industry and other industries, and to deeply dive into these relating working fields.
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
This book reports on a comprehensive study addressing the dynamic responses of hydropower plants under diverse conditions and disturbances, and analyzes their stability and oscillations. Multiple models based on eight existing hydropower plants in Sweden and China were developed and used for simulations and theoretical analysis with various degrees of complexity and for different purposes, and compared with on-site measurements for validations. The book offers important insights into the understanding of the hydraulic, mechanical and electrical coupling mechanisms, up to market conditions and incentives. It recommends control strategies for a more stable and efficient operation of hydropower plants.
Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.
After a short introduction to the fundamentals, this book provides a detailed account of major advances in applying fractional calculus to dynamical systems. Fractional order dynamical systems currently continue to gain further importance in many areas of science and engineering. As with many other approaches to mathematical modeling, the first issue to be addressed is the need to couple a definition of the fractional differentiation or integration operator with the types of dynamical systems that are analyzed. As such, for the fundamentals the focus is on basic aspects of fractional calculus, in particular stability analysis, which is required to tackle synchronization in coupled fractional order systems, to understand the essence of estimators for related integer order systems, and to keep track of the interplay between synchronization and parameter observation. This serves as the common basis for the more advanced topics and applications presented in the subsequent chapters, which include an introduction to the 'Immersion and Invariance' (I&I) methodology, the masterslave synchronization scheme for partially known nonlinear fractional order systems, Fractional Algebraic Observability (FAO) and Fractional Generalized quasi-Synchronization (FGqS) to name but a few. This book is intended not only for applied mathematicians and theoretical physicists, but also for anyone in applied science dealing with complex nonlinear systems.
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs 6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations."
Imparts the theory and analysis regarding the dynamics of rotating machinery in order to design such rotating devices as turbines, jet engines, pumps and power-transmission shafts. Takes into account the forces acting upon machine structures, bearings and related components. Provides numerical techniques for analyzing and understanding rotor systems with examples of actual designs. Features an excellent treatment of numerical methods available to obtain computer solutions for authentic design problems.
This book was written to facilitate column sizing and reinforcement design for structural engineers. It arranges the design data in a clearly structured manner, and provides quick and easy ways for engineers to compare the feasibility of multiple alternatives (various column sizes and reinforcement configurations). With the help of this book, engineers can rapidly produce outputs for architects, which the latter can incorporate into their architectural layout plans. These outputs can also benefit quantity surveyors, especially for costing purposes, and help avoid careless design errors. The book is chiefly intended for structural engineers who implement Eurocode 2 for reinforced concrete design. To gain the most from it, readers should possess a basic understanding of column design, e.g. the stresses and forces produced in columns and their reinforcements when subjected to axial load and bending moment. However, the book also provides explanatory notes for the design data tables, allowing them to be used without prior background knowledge.
The sixth edition of Structural Dynamics: Theory and Computation is the complete and comprehensive text in the field. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this text will serve the practicing engineer as a primary reference. The text differs from the standard approach of other presentations in which topics are ordered by their mathematical complexity. This text is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters, then moves to systems with many degrees-of-freedom in the following chapters. Finally, the text moves to applications of the first chapters and special topics in structural dynamics. This revised textbook intends to provide enhanced learning materials for students to learn structural dynamics, ranging from basics to advanced topics, including their application. When a line-by-line programming language is included with solved problems, students can learn course materials easily and visualize the solved problems using a program. Among several programming languages, MATLAB (R) has been adopted by many academic institutions across several disciplines. Many educators and students in the U.S. and many international institutions can readily access MATLAB (R), which has an appropriate programming language to solve and simulate problems in the textbook. It effectively allows matrix manipulations and plotting of data. Therefore, multi-degree-of freedom problems can be solved in conjunction with the finite element method using MATLAB (R).The revised version will include: * solved 34 examples in Chapters 1 through 22 along with MALAB codes. * basics of earthquake design with current design codes (ASCE 7-16 and IBC 2018). * additional figures obtained from MATLAB codes to illustrate time-variant structural behavior and dynamic characteristics (e.g., time versus displacement and spectral chart). This text is essential for civil engineering students. Professional civil engineers will find it an ideal reference.
In this book, all physical laws are derived from a small number of invariant integrals which express the conservation of energy, mass, or momentum. This new approach allows us to unify the laws of theoretical physics, to simplify their derivation, and to discover some novel or more universal laws. Newton's Law of gravity is generalized to take into account cosmic forces of repulsion, Archimedes' principle of buoyancy is modified for account of the surface tension, and Coulomb's Laws for rolling friction and for the interaction of electric charges are substantially repaired and generalized. For postgraduate students, lecturers and researchers.
The main aim of this book is to demonstrate the fundamental theory of advanced solid mechanics through simplified derivations with details illustrations to deliver the principal concepts. It covers all conceptual principals on two- and three-dimensional stresses, strains, stress-strain relations, theory of elasticity and theory of plasticity in any type of solid materials including anisotropic, orthotropic, homogenous and isotropic. Detailed explanation and clear diagrams and drawings are accompanied with the use of proper jargons and notations to present the ideas and appropriate guide the readers to explore the core of the advanced solid mechanics backed by case studies and examples. Aimed at undergraduate, senior undergraduate students in advanced solid mechanics, solid mechanics, strength of materials, civil/mechanical engineering, this book Provides simplified explanation and detailed derivation of correlation and formula implemented in advanced solid mechanics Covers state of two and three-dimensional stresses and strains in solid materials in various conditions Describes principal constitutive models for various type of materials include of anisotropic, orthotropic, homogenous and isotropic materials. Includes stress-strain relation and theory of elasticity for solid materials. Explores inelastic behaviour of material, theory of plasticity and yielding criteria.
The main aim of this book is to demonstrate the fundamental theory of advanced solid mechanics through simplified derivations with details illustrations to deliver the principal concepts. It covers all conceptual principals on two- and three-dimensional stresses, strains, stress-strain relations, theory of elasticity and theory of plasticity in any type of solid materials including anisotropic, orthotropic, homogenous and isotropic. Detailed explanation and clear diagrams and drawings are accompanied with the use of proper jargons and notations to present the ideas and appropriate guide the readers to explore the core of the advanced solid mechanics backed by case studies and examples. Aimed at undergraduate, senior undergraduate students in advanced solid mechanics, solid mechanics, strength of materials, civil/mechanical engineering, this book Provides simplified explanation and detailed derivation of correlation and formula implemented in advanced solid mechanics Covers state of two and three-dimensional stresses and strains in solid materials in various conditions Describes principal constitutive models for various type of materials include of anisotropic, orthotropic, homogenous and isotropic materials. Includes stress-strain relation and theory of elasticity for solid materials. Explores inelastic behaviour of material, theory of plasticity and yielding criteria.
The request to organize under its patronage at Poitiers in 1998 a Symposium entitled "Advanced Optical Methods and Applications in Solid Mechanics" by the International Union of Theoretical and Applied Mechanics (I.U.T.A.M.) was well received for the following two reasons. First, for nearly 20 years no Symposium devoted to optical methods in solids had been organized. Second, recent advances in digital image processing provided many new applications which are described in the following. We have the honour to present here the proceedings of this Symposium. st th The Symposium took place from august 31 to September 4 at the Institut International de la Prospective in Futuroscope near Poitiers. A significant number of internationally renowned specialists had expressed their wish to participate in this meeting. The Scientific Committee proposed 16 general conferences and selected 33 regular lectures and 17 poster presentations. Papers corresponding to posters are not differentiated in the proceedings from those that were presented orally. It is worth noting that a total of 80 participants, representing 16 countries, registered for this symposium.. The Scientific Committee deserves praise for attracting a significant number of young scientists, both as authors and as participants. Let us add our warm acknowledgements to Professor J.W. Dally and to Professor A.S. Kobayashi who, throughout the symposium preparation time, brought us valuable help.
The updated and improved second edition of Direct Gear Design details a nonstandard gear design approach that makes it possible to significantly improve gear drive performance. Providing engineers with gear design solutions beyond standard limits, this book delivers engineers with practical and innovative solutions to optimize gearing technologies. The majority of modern gears are over-standardized, not allowing gear design engineers to see possible gear design solutions outside of standard limits. The book explores opportunities to improve and optimize gears beyond these limitations. The method of Direct Gear Design has been proven to maximise gear drive performance, increase transmission load capacity and efficiency, and reduce size and weight. Discussing the use of gears made from powder metal and plastic, the book surveys gear manufacture and makes use of extensive references to encourage further exploration of gear design innovation. Additionally, the book provides an overview of manufacturing technologies and traditional gear design, as well as covering topics such as asymmetric gears, tolerance selection and measurement methods of custom gears. Written accessibly, with a focus on practical examples, this fully updated edition will serve as a guidebook for all professionals exploring high-performance gearing system technologies. |
![]() ![]() You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,237
Discovery Miles 42 370
Small Fatigue Cracks - Mechanics…
K.S. Ravichandran, Y. Murakami, …
Hardcover
R4,116
Discovery Miles 41 160
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,620
Discovery Miles 36 200
Dynamic Deformation, Damage and Fracture…
Vadim V. Silberschmidt
Hardcover
R7,059
Discovery Miles 70 590
Computational Structural Mechanics…
Snehashish Chakraverty, Karan Kumar Pradhan
Paperback
Welding Deformation and Residual Stress…
Ninshu Ma, Dean Deng, …
Paperback
R4,069
Discovery Miles 40 690
|