![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
As a continuation of the author's previous book An Introduction to the Theory of Piezoelectricity (Springer, New York, 2005) on the three-dimensional theory of piezoelectricity, this book covers one- and two-dimensional theories of piezoelectric structures including rods, beams, plates and shells. In addition to the so-called low-frequency motions of extension and bending, high-frequency motions of thickness shear and thickness stretch are also considered for certain applications unique in resonant piezoelectric devices. Both single-layer and multi-layer structures are treated. Nonlinear effects due to large deflection or large shear deformation are also discussed. The emphasis in on the development of structural theories with various levels of sophistication for different applications in piezoelectric devices.The book is heavily influenced by R D Mindlin's early contributions to this field. It is destined to be one of the most systematic and comprehensive books on piezoelectric structures. This second edition is a major reorganization of the first edition with multiple additions as well as deletion of chapters and sections.
This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.
This book reviews the most common state-of-the art methods for substructuring and model reduction and presents a framework that encompasses most method, highlighting their similarities and differences. For example, popular methods such as Component Mode Synthesis, Hurty/Craig-Bampton, and the Rubin methods, which are popular within finite element software, are reviewed. Similarly, experimental-to-analytical substructuring methods such as impedance/frequency response based substructuring, modal substructuring and the transmission simulator method are presented. The overarching mathematical concepts are reviewed, as well as practical details needed to implement the methods. Various examples are presented to elucidate the methods, ranging from academic examples such as spring-mass systems, which serve to clarify the concepts, to real industrial case studies involving automotive and aerospace structures. The wealth of examples presented reveal both the potential and limitations of the methods.
This volume consists of 14 contributed chapters written by leading experts, offering in-depth discussions of the mathematical modeling and algorithmic aspects for tackling a range of space engineering applications. This book will be of interest to researchers and practitioners working in the field of space engineering. Since it offers an in-depth exposition of the mathematical modelling, algorithmic and numerical solution aspects of the topics covered, the book will also be useful to aerospace engineering graduates and post-graduate students who wish to expand their knowledge by studying real-world applications and challenges that they will encounter in their profession. Readers will obtain a broad overview of some of the most challenging space engineering operational scenarios of today and tomorrow: this will be useful for managers in the aerospace field, as well as in other industrial sectors. The contributed chapters are mainly focused on space engineering practice. Researchers and practitioners in mathematical systems modelling, operations research, optimization, and optimal control will also benefit from the case studies presented in this book. The model development and optimization approaches discussed can be extended towards other application areas that are not directly related to space engineering. Therefore, the book can be a useful reference to assist in the development of new modelling and optimization applications.
Vibration Problems in Machines explains how to infer information about the internal operations of rotating machines from external measurements through methods used to resolve practical plant problems. Second edition includes summary of instrumentation, methods for establishing machine rundown data, relationship between the rundown curves and the ideal frequency response function. The section on balancing has been expanded and examples are given on the strategies for balancing a rotor with a bend, with new section on instabilities. It includes case studies with real plant data, MATLAB (R) scripts and functions for the modelling and analysis of rotating machines.
This volume gathers contributions from the final workshop of the RILEM TC-251-SRT "Sulfate Resistance Testing" on External Sulfate Attack (TESA 2018), held on May 24-25, 2018 at IETcc-CSIC, Madrid, Spain. One of the Technical Committee's main events, it addressed various aspects of external sulfate attack in concrete structures and test methods. The workshop promoted technical discussions and debates on ideas on these topics, with a focus on evaluating the resistance of concrete exposed to ESA. It also provided a forum for participants from around the globe to share their experiences and research on concrete structures affected by external sulfate attack and on test methods. The book discusses the latest advances in research related to ESA and new developments in test methods, and features real-world case studies of concrete structures affected by external sulfate attack in various countries. It also presents new studies linking field cases and lab tests, including 12 contributions on 3 main themes: mechanisms of alteration in external sulfate attack; field aspects of external sulfate attack; and testing to evaluate the resistance of concrete to external sulfate attack.
This volume emphazises the most recent advances in fracture mechanics as specifically applied to steel bar reinforced concrete. Fracture mechanics has been applied to plain and fibre reinforced concrete with increasing success over recent years. This workshop extended these concepts to steel bar reinforced and pre-stressed concrete design. Particularly for high strength concrete, which is a very brittle material, and in the case of large structural members, the application of fracture mechanics appears to be very useful for improving the present design rules. The pre-eminent participants at the Turin workshop contributed extensive expert opinions in four selected areas for which a rational approach, using fracture mechanics, could introduce variations into the concrete design codes: size effects; anchorage and bond; minimum reinforcement for elements in flexure; and shear resistance. The 23 chapters logically address these themes and demonstrate the unique ability of fracture mechanics to capture all the experimentally observed characteristics. The book is primarily directed to the researchers in universities and institutions and will be of value to consultants and engineering companies.
This book presents an introduction to viscoelasticity; in particular, to the theories of dilute polymer solutions and dilute suspensions of rigid particles in viscous and incompressible fluids. These theories are important, not just because they apply to practical problems of industrial interest, but because they form a solid theoretical base upon which mathematical techniques can be built, from which more complex theories can be constructed, to better mimic material behaviour. The emphasis is not on the voluminous current topical research, but on the necessary tools to understand viscoelasticity at a first year graduate level. The main aim is to provide a still compact book, sufficient at the level of first year graduate course for those who wish to understand viscoelasticity and to embark in modeling of viscoelastic multiphase fluids. To this end, a new chapter on Dissipative Particle Dynamics (DPD) was introduced which is relevant to model complex-structured fluids. All the basic ideas in DPD are reviewed, with some sample problems to illustrate the methodology.
This fifth edition of "Engineering Physiology" has the same purpose as the earlier prints: to provide physiological information which engineers, designers, supervisors, managers and other planners need to make work and equipment "fit the human." Chapters have been revised, figures and tables updated. New material discusses, among other topics, models of the human body that provide practical and design-oriented information, biomechanics describing the body's capabilities and limitations, effects of shift work / sleep loss on attitude and performance, and new techniques to measure body sizes and the resultant changes in applications of that information. The book does not replace standard (biological-medical-chemical) textbooks on human physiology; instead, it provides information on human features and functions which are basic to ergonomics or human (factors) engineering, terms often used interchangeably. It helps lay the foundations for teamwork among engineers and physiologists, biologists and physicians. Bioengineering topics concern bones and tissues, neural networks, biochemical processes, bio- and anthromechanics, biosensors, perception of information and related actions, to mention just a few areas of common interest. Such understanding provides the underpinnings for devising work tasks, tools, workplaces, vehicles, work-rest schedules, human-machine systems, homes and designed environments so that we humans can work and live safely, efficiently and comfortably.
This book discusses the impact of different range of velocities (low, high, ballistic and hyper-velocity impact) on composites. Presented through experimental and numerical analysis, the book goes beyond impact event analysis and also covers the after-impact phenomena, including flexural and compression and damage analysis through destructive and non-destructive evaluations. The analyses presented from either experimental or numerical simulations are composed of micro and macrographs images, illustrations, tables and figures with inclusive discussions and supportive evidences from recent studies on composites. This book also highlights the potential applications of composites through the lens of their impact properties, in different industries such as automotive and defence applications. Generally, this book benefits wider range of readers including the industrial practitioners, researchers, lecturer and students, who are working in the fields related to impact and damage analysis, including the structural health monitoring of composites, either experimentally or numerically.
Wire rope is used in countless applications ranging from braces for teeth to superconducting cables. Many power lines are strands of aluminum wires twisted around a steel center wire; the most spectacular bridges are suspended from wire cables; wire rope is used to lower workers and equipment as deep as three miles in the gold mines of South Africa; and wire rope finds many applications in biomechanics.
This book is the fourth volume in the series devoted to gear engineering and computer-aided design, production, testing and education. It comprises fundamental and applied research contributions by scientists and gear experts from all the world and covers recent developments and historical achievements in various spheres of mechanical engineering related to different kinds of gears, transmissions, and drive systems. It gathers contributions describing the advanced approaches to research, design, testing and production of practically all common and new kinds of gears for a vast number of advanced applications. Special attention is paid to issues of higher education in the field of gears. The book is intended as a tribute to professor Veniamin Goldfarb (1941-2019), one of the world-known leaders in the field of gear research, education and production, who contributed much to the active international cooperation of gear experts and to promotion of MMS science. The introductory chapter of this book relates his research to major developments in the field of mechanisms and machine science and outlines important contributions that he made within the period of 1964-2019.
The theory of dynamical systems, or mappings, plays an important
role in various disciplines of modern physics, including celestial
mechanics and fluid mechanics. This comprehensive introduction to
the general study of mappings has particular emphasis on their
applications to the dynamics of the solar system. The book forms a
bridge between continuous systems, which are suited to analytical
developments and to discrete systems, which are suitable for
numerical exploration.
This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.
This book addresses issues pertinent to mechanics and stress generation, especially in recent advanced cases of technology developments, spanning from micrometer interconnects in solar photovoltaics (PV), next-gen energy storage devices to multilayers of nano-scale composites enabling novel stretchable/flexible conductor technologies. In these cases, the mechanics of materials have been pushed to the extreme edges of human knowledge to enable cutting-edge, unprecedented functionalities and technological innovations. Synchrotron X-ray diffraction, in situ small-scale mechanical testing combined with physics-based computational modeling/simulation, has been widely used approaches to probe these mechanics of the materials at their extreme limits due to their recently discovered distinct advantages. The techniques discussed in this manuscript are highlights specially curated from the broad body of work recently reported in the literature, especially ones that the author had led the pursuits at the frontier himself. Extreme stress generation in these advanced material leads to often new failure modes, and hence, the reliability of the final product is directly affected. From the recent topics and various advanced case studies covered in this book, the reader gets an updated knowledge of how new mechanics can and has been applied in Design-for-Reliability (DfR) for some of the latest technological innovations known in our modern world. Further, this also helps in building better designs, which may avoid the pitfalls of the current practiced trends.
Concrete durability in climates where freezing and thawing occurs is a continuing problem. It is particularly acute for highway and bridge structures, where de-icing salts are used to combat the effects of frost, snow and ice. These salts can cause damage to concrete and accelerate corrosion of reinforcements. This book presents the latest international research on this area, with contributions from North America and Europe which were presented at an international RILEM workshop.
This proceedings contains the best contributions to the series of seminars held in Vienna (1992), Miskolc, Hungary (1993 and 1994) and Vienna (1995) and provides a valuable resource for those concerned with the teaching of fracture and fatigue. It presents a wide range of approaches relevant to course and curriculum development. It is aimed particularly at those concerned with graduate and post-graduate education.
Compares currently used methods in determining concrete toughness and presents recommended test procedures with theories and models for describing cracking and fracturing phenomena. Effects of loading rate, temperature and humidity are also examined. Well referenced and illustrated, this book is filled with practical technical information for materials and structural engineers.
Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. Vibration of Plates provides a comprehensive, self-contained introduction to vibration theory and analysis of two-dimensional plates. Reflecting the author's more than 15 years of original research on plate vibration, this book presents new methodologies and demonstrates their effectiveness by providing comprehensive results. The text also offers background information on vibration problems along with a discussion of various plate geometries and boundary conditions, including the new concepts of Boundary Characteristic Orthogonal Polynomials (BCOPs).
This book provides an in-depth understanding of precise and approximate MMC modeling and calculation techniques of engineering systems. The in-depth analysis demonstrates that it is only possible to precisely model and calculate the dependability of systems including s-dependent components with the knowledge of their (total) universe spaces, represented here by Markov spaces. They provide the basis for developing and verifying approximate MMC models. With the mathematical steps described and applied to several examples throughout this text, interested system developers and users can perform dependability analyses themselves. All examples are structured in precisely the same way.
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
This volume presents the Proceedings of the Seventh International Conference on Vibration Problems, held in Istanbul, Turkey, 05-09 September 2005. As with the earlier conferences in the ICOVP series, the purpose of ICOVP-2005 was to bring together scientists with different backgrounds, actively working on vibration-related problems of engineering both in theoretical and applied fields. The main objective did not lie, however, in reporting specific results as such, but rather in joining/exchanging different languages, questions and methods developed in the respective disciplines, and to thus stimulate a broad interdisciplinary research. The topics, indeed, vary from the effect of ground motion on the stochastic response of suspension bridges to coupling effects between different vibrations in rotor-blade systems. All lectures delivered at the Conference are recorded in their full text.
This reference guide or undergraduate text shows how to determine, by analyzing metallurgical failures, the validity of a product design. This revision of a successful work features new techniques in electron microscopy, testing fracture toughness, and fracture mechanics. It describes destructive and nondestructive techniques regarding their advantages, limitations, applications, and meaning. Written to be understood by all engineers concerned about component failure, this edition approaches typical problem areas from a physical and mechanical viewpoint. Also described is the relationship between the practical and the theoretical, so that failure analyses can best be resolved and failure recurrence prevented. The book maintains English and SI units throughout.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models. |
You may like...
Welding Deformation and Residual Stress…
Ninshu Ma, Dean Deng, …
Paperback
R3,925
Discovery Miles 39 250
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R3,937
Discovery Miles 39 370
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,760
Discovery Miles 37 600
Small Fatigue Cracks - Mechanics…
K.S. Ravichandran, Y. Murakami, …
Hardcover
R3,970
Discovery Miles 39 700
|