![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
One of the main, ongoing challenges for any engineering enterprise is that systems are built of materials subject to environmental degradation. Whether working with an airframe, integrated circuit, bridge, prosthetic device, or implantable drug-delivery system, understanding the chemical stability of materials remains a key element in determining their useful life. Environmental Degradation of Advanced and Traditional Engineering Materials is a monumental work for the field, providing comprehensive coverage of the environmental impacts on the full breadth of materials used for engineering infrastructure, buildings, machines, and components. The book discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. Each chapter presents the basic properties of the class of material, followed by detailed characteristics of degradation, guidelines on how to protect against corrosion, and a description of testing procedures. A complete, self-contained industrial reference guide, this valuable resource is designed for students and professionals interested in the development of deterioration-resistant technological systems constructed with metallurgical, polymeric, ceramic, and natural materials.
This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics. Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates offers an introduction to structural vibration and highlights the importance of the natural frequencies in design. It focuses on free vibrations for analysis and design of structures and machine and presents the exact vibration solutions for strings, membranes, beams, and plates. This book emphasizes the exact solutions for free transverse vibration of strings, membranes, beams, and plates. It explains the intrinsic, fundamental, and unexpected features of the solutions in terms of known functions as well as solutions determined from exact characteristic equations. The book provides: A single-volume resource for exact solutions of vibration problems in strings, membranes, beams, and plates A reference for checking vibration frequency values and mode shapes of structural problems Governing equations and boundary conditions for vibration of structural elements Analogies of vibration problems Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates provides practicing engineers, academics, and researchers with a reference for data on a specific structural member as well as a benchmark standard for numerical or approximate analytical methods.
This monograph presents an approachable proof of Mirzakhani's curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmuller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani's curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani's Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.
During the 1980s the technology of modal testing became very widely practised in all those engineering disciplines where vibration and other dynamic phenomena affect the behaviour and performance of structures and machines. The techniques involved in carrying out a modal test were developed to a high degree of sophistication while the applications to which the results of these tests could be put became more numerous and more powerful. At the same time as the advantages of modal testing were being enjoyed by an increasing audience, some of the drawbacks of inexpert use of the technology were being learned and recorded. These experiences reinforced the need for a thorough understanding of fundamentals upon which modal testing is based, and of the detailed workings of the various phases and processes which make up a successful test. In this book, all the steps involved in planning, executing, interpreting and applying the results from a modal test are described in straightforward terms. Efforts are made throughout to ensure that the reader understands the physics of the various stages as well as (if not before) the mathematics. This edition has brought the previous book up to date by including all the new and improved techniques which have emerged during the 15 years since the first edition was written. The more powerful applications are developed in more detail than previously and some new topics have been introduced, notable amongst which are the application of modal testing to rotating machinery and the use of the scanning laser vibrometer.
This book covers the impact of sustainable masonry on the environment, touting the many benefits of utilizing local and/or low embodied energy materials in the construction of sustainable buildings. .
This unique compendium contains a vast systematized data of 14,000 experiments on high-velocity penetration into metals, concrete, reinforced concrete, and geological media which were published in the open literature (journal papers, reports, conference proceedings) during the last 70 years. Data presented in this edition are related to the initial and final stages of penetration and include: parameters which characterize mechanical and geometric properties of the striker and the shield; striking and residual velocities of projectile or depth of penetration; changes of mass and size of projectile; angles that determine the initial and residual position of the projectile; ballistic limit velocity; basic characteristics of plug and deformation of the shield.Unified form of data representation and common notations are used throughout the book. All information is presented in numerical form in SI units. The book also contains indices which allow a fast search of the authors' publications and related experiments. Theoreticians, design engineers and experimentalists will find this handbook a valuable reference material.
This book is a collection of papers contributed by some of the greatest names in the areas of chaos and nonlinear dynamics. Each paper examines a research topic at the frontier of the area of dynamical systems. As well as reviewing recent results, each paper also discusses the future perspectives of each topic. The result is an invaluable snapshot of the state of the ?eld by some of the most important researchers in the area. The ?rst contribution in this book (the section entitled "How did you get into Chaos?") is actually not a paper, but a collection of personal accounts by a number of participants of the conference held in Aberdeen in September 2007 to honour Celso Grebogi's 60th birthday. At the instigation of James Yorke, many of the most well-known scientists in the area agreed to share their tales on how they got involved in chaos during a celebratory dinner in Celso's honour during the conference. This was recorded in video, we felt that these accounts were a valuable historic document for the ?eld. So we decided to transcribe it and include it here as the ?rst section of the book.
This book comprises select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses different topics of industrial and production engineering such as sustainable manufacturing systems, computer-aided engineering, rapid prototyping, manufacturing management and automation, metrology, manufacturing process optimization, casting, welding, machining, and machine tools. The contents of this book will be useful for researchers as well as professionals.
This book introduces the latest advances in modular robotics, and presents a unified geometric framework for modeling, analysis, and design of modular robots, including kinematics, dynamics, calibration, and configuration optimization. Supplementing the main content with a wealth of illustrations, the book offers a valuable guide for researchers, engineers and graduate students in the fields of mechatronics, robotics, and automation who wish to learn about the theory and practice of modular robots.
Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.
Oriented toward those who will use finite elements (FE) rather than toward theoreticians and computer programmers. Emphasizes the behavior of FE and how to use the FE method successfully. Includes several examples of FE analysis—each one features a critique of the accuracy of the solutions. Contains end-of-chapter exercises and extensive advice about FE modeling.
The Second USA-USSR Symposium on Fna~e 06 Compo~~e Mat~aGBPh took place at Lehigh University, Bethlehem, Pennsylvania, during 9-12 March, 1981. This bilateral program between the U. S. and Soviet Union was organized by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh Uni versity and Dr. Vitauts P. Tamuzs of the Institute of Polymer Mechanics of the Academy of Sciences of the Latvian SSR in Riga. The First Symposium was held in 1978 at Jurmala near the coast of Riga Bay. The primary reasons for initiating this series of Symposia were to dissemi nate present knowledge, to promote interchange of ideas, and to stimulate addi tional studies on the development of composite materials between the U. S. and USSR. Both countries have a vested interest in developing the capability to assess and utilize the attractive mechanical properties of composites so that they can be tailor-made to meet specific design requirements. Despite the in creasing number of published papers and articles, there is no communication more effective than on a person-to-person basis. It is with this objective in mind that a small group of engineers and scientists from the U. S. and USSR have planned to meet every two years to report recent progress on composite material research. The size of this group is approximately sixty (60) participants. The presentation involves about forty (40) technical papers which are published in volume.
Multi-Body Dynamics: Vehicles, Machines, and Mechanisms opens by providing an understanding of engineering dynamics and then leads on to the analysis, techniques, and problem solving approaches.
Provides Typical Abstract Representations of Different Steps for Analyzing Any Dynamic System Vibration and dynamics are common in everyday life, and the use of vibration measurements, tests, and analyses is becoming standard for various applications. Vibration Analysis, Instruments, and Signal Processing focuses on the basic understanding of vibration measurements and analysis. This book covers different areas of vibration measurements and analysis needed in practice, and discusses theory, application, and a variety of methods, in a simplified way. It communicates the fundamental principles of all three facets of vibration-based analysis, and highlights four major points-theory, instruments, experiments, and signal processing. Useful for everyday work, the book dedicates several chapters to the day-to-day requirements involved in vibration measurements and analysis, and addresses a number of topics useful for many day-to-day analyses and experiments. The book provides experimental examples in each chapter-considering basic theories and analysis methods, instrumentations and signal processing methods, and combined analysis-as well as experimental approaches and case studies. In addition, it dedicates a complete chapter to case studies relating the basic theory, types of instruments and measurements needed, and requisite signal processing that ultimately result in a final diagnosis. Consisting of ten chapters, this informative text: Provides the basic understanding and concept of the vibration theory, mathematical modeling of structures and machines using the finite element (FE) method, and the vibration response computation using the FE model for the load applied Discusses a simplified vibration theory through a single degree of freedom (SDOF) system of a mass and a spring Introduces the concept of FE modeling at a very basic level through a few simple examples Explores how the equation of motion in matrix form for any system can be integrated to solve for the responses at all DOFs due to the time-varying external loadings Developed for diverse audiences interested in vibration analysis, this book is suitable for every level of student, engineer, and scientist associated with vibration, structural and rotor dynamics, vibration-based diagnosis, and vibration-based condition monitoring.
Durability of Industrial Composites offers numerical and quantitative solutions to long-term composite failures that are useful to practicing engineers, researchers, and students. All modes of laminate long-term failure are contemplated, with resin toughness and environmental conditions considered. The book develops a simple unified equation to compute the load-dependent durability of laminates under the simultaneous action of cyclic and static loads. The load-independent durability and residual life of equipment immersed in corrosive chemicals are also discussed. The book presents a full discussion of the elusive strain-corrosion mode of failure as well as a complete solution to the durability issue of underground sanitation pipes. The currently accepted durability parameters of HDB, Sb and Sc are discarded as incorrect and replaced with the appropriate threshold parameters. The entirely new concept of the "anomalous failure" is fully discussed and solved. The effects of overpressure and spike strains, as well as of the operating temperature and moisture, are quantitatively evaluated and illustrated in numerical examples.
Since the publication of the first edition, considerable progress has been made in the development and application of active noise control (ANC) systems, particularly in the propeller aircraft and automotive industries. Treating the active control of both sound and vibration in a unified way, this second edition of Active Control of Noise and Vibration continues to combine coverage of fundamental principles with the most recent theoretical and practical developments. What's New in This Edition Revised, expanded, and updated information in every chapter Advances in feedforward control algorithms, DSP hardware, and applications Practical application examples of active control of noise propagating in ducts The use of a sound intensity cost function, model reference control, sensing radiation modes, modal filtering, and a comparison of the effectiveness of various sensing strategies New material on feedback control of sound transmission into enclosed spaces New material on model uncertainty, experimental determination of the system model, optimization of the truncated model, collocated actuators and sensors, biologically inspired control, and a discussion of centralised versus de-centralised control A completely revised chapter on control system implementation New material on parametric array loudspeakers, turbulence filtering, and virtual sensing More material on smart structures, electrorheological fluids, and magnetorheological fluids Integrating the related disciplines of active noise control and active vibration control, this comprehensive two-volume set explains how to design and implement successful active control systems in practice. It also details the pitfalls one must avoid to ensure a reliable and stable system.
The complete primer to micromechanics Fundamentals of Micromechanics of Solids is the first book
integrating various approaches in micromechanics into a unified
mathematical framework, complete with coverage of both linear and
nonlinear behaviors. Based on this unified framework, results from
the authors' own research, as well as existing results in the
literature are re-derived in a logical, pedagogical, and
understandable approach. It enables readers to follow the various
developments of micromechanics theories and quickly understand its
wide range of applications of micromechanics.
The Duffing Equation: Nonlinear Oscillators and their Behaviour brings together the results of a wealth of disseminated research literature on the Duffing equation, a key engineering model with a vast number of applications in science and engineering, summarizing the findings of this research. Each chapter is written by an expert contributor in the field of nonlinear dynamics and addresses a different form of the equation, relating it to various oscillatory problems and clearly linking the problem with the mathematics that describe it. The editors and the contributors explain the mathematical techniques required to study nonlinear dynamics, helping the reader with little mathematical background to understand the text. The Duffing Equation provides a reference text for postgraduate and students and researchers of mechanical engineering and vibration / nonlinear dynamics as well as a useful tool for practising mechanical engineers. * Includes a chapter devoted to historical background on Georg Duffing and the equation that was named after him. * Includes a chapter solely devoted to practical examples of systems whose dynamic behaviour is described by the Duffing equation. * Contains a comprehensive treatment of the various forms of the Duffing equation. * Uses experimental, analytical and numerical methods as well as concepts of nonlinear dynamics to treat the physical systems in a unified way.
Explore a Unified Treatment of the Finite Element Method The finite element method has matured to the point that it can accurately and reliably be used, by a careful analyst, for an amazingly wide range of applications. With expanded coverage and an increase in fully solved examples, the second edition of Finite Element Analysis: Thermomechanics of Solids presents a unified treatment of the finite element method in theremomechanics, from the basics to advanced concepts. An Integrated Presentation of Critical Technology As in the first edition, the author presents and explicates topics in a way that demonstrates the highly unified structure of the finite element method. The presentation integrates continuum mechanics and relevant mathematics with persistent reliance on variational and incremental-variational foundations. The author exploits matrix-vector formalisms and Kronecker product algebra to provide transparent and consistent notation throughout the text. Nearly twice as long as the first edition, this second edition features: Greater integration and balance between introductory and advanced material Increased number of fully solved examples Selected developments in numerical methods, detailing accelerating computations in eigenstructure extraction, time integration, and stiffness matrix triangularization More extensive coverage of the arc length method for nonlinear problems Expanded and enhanced treatment of rotating bodies and buckling Provides Sophisticated Understanding of Capabilities and Limitations This new edition of a popular text includes significant illustrative examples and applications, modeling strategies, and explores a range
Almost all books available on fracture mechanics cover the majority of topics presented in this book, and often much, much more. While great as references, this makes teaching from them more difficult because the materials are not typically presented in the order that most professors cover them in their lectures and more than half the information presented is not covered in an introductory course at all. Focusing on the needs of students and professors, Fundamentals of Fracture Mechanics offers an introduction to the discipline through careful editing and mindfulness toward the audience. The book begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. The following material has been carefully selected, only including topics important enough to be covered in a first course on fracture mechanics. Except for the last chapter, no advanced topics are covered. Therefore, instructors of elementary fracture mechanics courses can easily cover the entire book in a three-unit graduate-level course without having to spend too much time picking and choosing appropriate topics for the course from the vast knowledge presented in most fracture mechanic books available today. Drawing on over 20 years of teaching, the author supplies practical and useful resources, including practice exercises designed to facilitate enjoyable learning and reference for further study. His clear, concise coverage of essential information makes the book ideal not only for an introductory course but also for self-study.
While residual stress can be a problem in many industries and lead to early failure of component, it can also be introduced deliberately to improve lifetimes. Knowledge of the residual stress state in a component can be critical for quality control of surface engineering processes or vital to performing an accurate assessment of component life under fatigue loading. Neutron and synchrotron X-ray diffraction have emerged as leading techniques for stress analysis, as they can penetrate many millimetres or centimetres into components, allowing nondestructive measurement of the internal strains. Both methods require the use of costly facility-based equipment, but great advantages are obtained from the ability to probe the stress state deep below a specimen's surface. Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation gives an overview of the principles of these techniques and examples of their applications to a range of materials and engineering problems. It contains 20 chapter contributed by leading international experts in residual stress analysis, who explore the theoretical basis of stress analysis by diffraction methods, the practical implementation of the methods, and examples of key applications. The applications discussed include the determination of internal stresses in weldments, in composite materials, following shot peening, and in ceramics. This book will be useful for engineers and scientists who work in any field where residual stresses are of importance, and for anyone involved with the application of neutron or synchrotron radiation for stress management. As the techniques become a basic component of the measurement toolkit for stress analysis, an appreciation of the practicalities and limitations of these methods in practice will be important throughout a range of engineering and scientific fields.
Localized deformation in the form of narrow shear bands are often observed to develop after larger plastic deformations in metals, polymers and powders. Shear bands, being a form of large plastic deformation, are usually the precursors of ductile fracture. Therefore, an improved knowledge of localized deformation, including instability, shear bands, damage and fracture, play a particularly significant role in a wide variety of engineering topics. One example is material processing. Since the 1970s shear banding has been extensively studied by mechanical and metallurgical engineers. There is a pressing requirement in physics and engineering to summarize the knowledge gained and to assist students and researchers to apply this knowledge in their respective areas of technology. This book is an invaluable reference source on the topic of adiabatic shear localization. It provides a systematic description of various aspects of adiabatic shear banding, and the various case studies describe the ways in which the knowledge of adiabatic shear localization can be used in several applications.In this way, readers can easily follow the different approaches and transfer concepts and techniques to help solve the problems they encounter in their own fields of interest.
Many high-rise buildings have been constructed in recent decades,
particularly in Western Pacific Rim countries. Some examples of
these include the Grand Gateway at Xi Hui and the Tomorrow Square,
both in Shanghai, the Xiamen Post and Telecommunication Building in
China, the Petronas (twin) Towers in Malaysia and the Shanghai
World Financial Center. The last three are well over 1,000 feet in
height, with the Petronas Towers measuring 1,483 feet tall and the
Shanghai World Financial Center standing at 1,509 feet tall. |
![]() ![]() You may like...
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
![]()
|