![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
With the advent of the 80's there has been an increasing need for analytic and numerical techniques, based on a thorough understanding of microstructural processes, that express in a manner suitable for practicing engineers the reliability of components and structures that are being subjected to degradation situations. Such situations fall within the framework offracture mechanics, fatigue, corrosion fatigue and pitting corrosion. Luckily, such techniques are now being developed and it was felt timely to combine in one volume reports by the leaders in this field who are currently making great strides towards solving these problems. Hence the idea of this monograph was born and I am pleased to be associated both with it and the contributors whose chapters are included in this volume. A very large part of the credit for this monograph must go to the authors who have taken time out from their busy schedules to prepare their submissions. They have all worked diligently over the last few months in order to get their manuscripts to me on time and I sincerely thank them for their help throughout the preparation of this volume.
This volume details the principles underlying rapid solidification processing, material structure and properties, and their applications. This practical resource presents a manifold approach to both amorphous and crystalline rapidly solidified metallic alloys.;Written by over 30 internationally acclaimed specialists in their respective fields, Rapidly Solidified Alloys: surveys nucleation and growth studies in undercooled melts; examines various processes for the production of rapidly solidified alloys; discusses the compaction of amorphous alloys; describes surface remelting treatments for the rapid solidification of surface layers and the resultant improved workpiece properties; covers the closely related topics of structural relaxation, atomic transport and other thermally induced processes; demonstrates microstructure-property relationships in rapidly quenched crystalline alloy systems and their beneficial effects in applications; and elucidates the basic, engineeering, and applications-oriented magnetic properties of amorphous alloys.;Furnishing more than 2300 literature citations for further study of specific subjects, Rapidly Solidified Alloys is intended for materials, mechanical, product, and civil engineers; metallurgists; magneticians; physicists; physical chemists; and graduate students in these disciplines.
This text presents the most recent research on fracture and damage of concrete and rock. It provides an improved understanding of the basic physical and mechanical principles of fracture mechanics in these materials with a strong view towards applications in construction engineering and mining engineering. It forms the proceedings of the international conference held in Vienna in November 1992. The background to the book comes from three main areas: fatigue and ageing of complex concrete structures have been responsible both for loss of life and for expenditure running into billions of dollars in recent decades; lack of virgin building land and high property values in cities and urban areas have led to more demolition and recycling of concrete structures, and related environmental problems; and more engineering structures are being built on and in rock mass of low quality and difficult terrain. Rock fracture mechanics has matured to a fully recognized discipline and is now being applied to problems of excavation, tunnelling, blasting and anchoring. FDCR Conferences provide a forum for international, interdisciplinary co-operation and exchange of ideas and experience between scienti
The area of material damage models has undergone a rapid development in the past few years. This is an extensive and comprehensive survey of one- and three-dimensional damage models for elastic and inelastic solids. The state-of-the-art is reported by about 200 references. The book not only provides a rich current source of knowledge, but also describes examples of practical applications, numerical procedures, and computer codes. The style of presentation is systematic, clear, and concise and is supported by illustrative diagrams.
This volume is a collection of the papers given at the workshop on Fracture Scaling, held at the University of Maryland, USA, 10-12 June 1999, under the sponsorship of the Office of Naval Research, Arlington, VA, USA. These papers can be grouped under five major themes: Micromechanical analysis Size effects in fiber composites Scaling and heterogeneity Computational aspects and nonlocal or gradient models Size effects in concrete, ice and soils . This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted. In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
This is the second of three volumes containing the proceedings of the International Colloquium 'Free Boundary Problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main theme of this volume is the concept of free boundary problems associated with solids. The first free boundary problem, the freezing of water - the Stefan problem - is the prototype of solidification problems which form the main part of this volume. The two sections treting this subject cover a large variety of topics and procedures, ranging from a theoretical mathematical treatment of solvability to numerical procedures for practical problems. Some new and interesting problems in solid mechanics are discussed in the first section while in the last section the important new subject of solid-solid-phase transition is examined.
This book (Vol. II) presents select proceedings of the first Online International Conference on Recent Advances in Computational and Experimental Mechanics (ICRACEM 2020) and focuses on theoretical, computational and experimental aspects of solid and fluid mechanics. Various topics covered are computational modelling of extreme events; mechanical modelling of robots; mechanics and design of cellular materials; mechanics of soft materials; mechanics of thin-film and multi-layer structures; meshfree and particle based formulations in continuum mechanics; multi-scale computations in solid mechanics, and materials; multiscale mechanics of brittle and ductile materials; topology and shape optimization techniques; acoustics including aero-acoustics and wave propagation; aerodynamics; dynamics and control in micro/nano engineering; dynamic instability and buckling; flow-induced noise and vibration; inverse problems in mechanics and system identification; measurement and analysis techniques in nonlinear dynamic systems; multibody dynamical systems and applications; nonlinear dynamics and control; stochastic mechanics; structural dynamics and earthquake engineering; structural health monitoring and damage assessment; turbomachinery noise; vibrations of continuous systems, characterization of advanced materials; damage identification and non-destructive evaluation; experimental fire mechanics and damage; experimental fluid mechanics; experimental solid mechanics; measurement in extreme environments; modal testing and dynamics; experimental hydraulics; mechanism of scour under steady and unsteady flows; vibration measurement and control; bio-inspired materials; constitutive modelling of materials; fracture mechanics; mechanics of adhesion, tribology and wear; mechanics of composite materials; mechanics of multifunctional materials; multiscale modelling of materials; phase transformations in materials; plasticity and creep in materials; fluid mechanics, computational fluid dynamics; fluid-structure interaction; free surface, moving boundary and pipe flow; hydrodynamics; multiphase flows; propulsion; internal flow physics; turbulence modelling; wave mechanics; flow through porous media; shock-boundary layer interactions; sediment transport; wave-structure interaction; reduced-order models; turbo-machinery; experimental hydraulics; mechanism of scour under steady and unsteady flows; applications of machine learning and artificial intelligence in mechanics; transport phenomena and soft computing tools in fluid mechanics. The contents of these two volumes (Volumes I and II) discusses various attributes of modern-age mechanics in various disciplines, such as aerospace, civil, mechanical, ocean engineering and naval architecture. The book will be a valuable reference for beginners, researchers, and professionals interested in solid and fluid mechanics and allied fields.
Despite their apparent simplicity, the behaviour of pendulums can be remarkably complicated. Historically, pendulums for specific purposes have been developed using a combination of simplified theory and trial and error. There do not appear to be any introductory books on pendulums, written at an intermediate level, and covering a wide range of topics. This book aims to fill the gap. It is written for readers with some background in elementary geometry, algebra, trigonometry and calculus. Historical information, where available and useful for the understanding of various types of pendulum and their applications, is included. Perhaps the best known use of pendulums is as the basis of clocks in which a pendulum controls the rate at which the clock runs. Interest in theoretical and practical aspects of pendulums, as applied to clocks, goes back more than four centuries. The concept of simple pendulums, which are idealised versions of real pendulums is introduced. The application of pendulums to clocks is described, with detailed discussion of the effect of inevitable differences between real pendulums and simple pendulums. In a clock, the objective is to ensure that the pendulum controls the timekeeping. However, pendulums are sometimes driven, and how this affects their behaviour is described. Pendulums are sometimes used for occult purposes. It is possible to explain some apparently occult results by using modern pendulum theory. For example, why a ring suspended inside a wine glass, by a thread from a finger, eventually strikes the glass. Pendulums have a wide range of uses in scientific instruments, engineering, and entertainment. Some examples are given as case studies. Indexed in the Book Citation Index- Science (BKCI-S)
This book offers a state-of-the-art overview and includes recent developments of various direct computational analysis methods. It is based on recently developed and widely employed numerical procedures for limit and shakedown analysis of structures and their extensions to a wide range of physical problems relevant to the design of materials and structural components. The book can be used as a complementary text for advanced academic courses on computational mechanics, structural mechanics, soil mechanics and computational plasticity and it can be used a research text.
This brochure offers numerical models of wind-induced aeolian vibrations and sub-span oscillations of the conductors. It highlights what can be expected from numerical models regarding conductor vibrations. Assessment of the aeolian vibration condition of particular lines, with conductors whose mechanical properties are poorly defined, or with special terrain conditions, may require field measurements; Analytical methods based on the EBP and shaker-based technology can provide a useful tool to design damping systems for the protection of single conductors against aeolian vibrations This work reports the state of the art for professionals regarding aeolian vibrations and subspan oscillations modelling.
Following Volumes III and IV that dealt with the fracture mechanics of concrete emphasizing both material testing and structural application in general, it was felt that specimen size and loading rate effects for concrete require further attention. The only criterion that has thus far successfully linearized the highly nonlinear crack growth data of concrete is the strain energy density theory. In particular, the crack growth resistance curves plotting the strain energy density factor versus crack growth known as the SR.curves are straight lines as specimen size and loading steps or rates are altered. This allows the extrapolation of data and provides a useful design methodology. This book is unique in that it is devoted specifically to the application of the strain energy density theory to civil engineering structural members made of concrete. Analyzed in detail is the strain softening behavior of concrete for a variety of different components including the influence of steel reinforcement. Permanent damage of the material is accounted for each increment of loading by invoking the mechanism of elastic unloading. This assumption is justified in concrete structures where the effective stiffness depends primarily on the crack growth rate and load history. Crack growth data are presented in terms of SR-curves with emphases placed on scaling specimen size which alone can change the mode of failure from plastic collapse to brittle fracture. Loading rate effects can also be scaled to control failure by yielding and fracture."
Research and development of various parallel mechanism applications in engineering are now being performed more and more actively in every industrial field. Parallel robot based machine tools development is considered a key technology of robot applications in manufacturing industries. The material covered here describes the basic theory, approaches, and algorithms in the field of parallel robot based machine tools. In addition families of new alternative mechanical architectures which can be used for machine tools with parallel architecture are introduced. Given equal importance is the design of mechanism systems such as kinematic analysis, stiffness analysis, kinetostatic modeling, and optimization.
Proceedings of the NATO Advanced Research Workshop on Mechanical Vibrations and Audible Noise in Alternating Current Machines, Leuven, Belgium, August 4-8, 1986
New developments in the response spectrum method have led to calculations in seismic stresses that are more accurate, and usually lower, than those obtained by conventional methods. This new textbook examines the wealth of information on the response spectrum method generated by the latest research and presents the background theory in simplified form.
Review(s) ...recommend this book to the applied community as a valuable source of practical examples of parametric excitations, treated in a modern fashion. - "Mathematical Reviews"; [Cartmell] has successfully presented the usually complicated and difficult subjects of parametric and nonlinear vibrations in a concise, clear and easy-to-understand manner - "Choice".
This book trains engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book walks readers through the steps required to improve machining productivity through chatter avoidance and reduced surface location error, and covers in detail topics such as modal analysis (including experimental methods) to obtain the tool point frequency response function, descriptions of turning and milling, force modeling, time domain simulation, stability lobe diagram algorithms, surface location error calculation for milling, beam theory, and more. This new edition includes updates throughout the entire text, new exercises and examples, and a new chapter on machining tribology. It is a valuable resource for practicing manufacturing engineers and graduate students interested in learning how to improve machining productivity through consideration of the process dynamics.
This volume emphazises the most early 1990s advances in fracture mechanics as specifically applied to steel bar reinforced concrete. Fracture mechanics has been applied to plain and fibre reinforced concrete with increasing success over recent years. This workshop extended these concepts to steel bar reinforced and pre-stressed concrete design. Particularly for high strength concrete, which is a very brittle material, and in the case of large structural members, the application of fracture mechanics appears to be very useful for improving the present design rules. The participants at the Turin workshop contributed expert opinions in four selected areas for which a rational approach, using fracture mechanics, could introduce variations into the concrete design codes: size effects; anchorage and bond; minimum reinforcement for elements in flexure; and shear resistance. The 23 chapters logically address these themes and demonstrate the unique ability of fracture mechanics to capture all the experimentally observed characteristics.
This book presents a liber amicorum dedicated to Wolfgang H. Muller, and highlights recent advances in Prof. Muller's major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Muller's friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.
This book presents selected peer-reviewed papers presented at the International Conference on Innovative Technologies in Mechanical Engineering (ITME) 2019. The book discusses a wide range of topics in mechanical engineering such as mechanical systems, materials engineering, micro-machining, renewable energy, systems engineering, thermal engineering, additive manufacturing, automotive technologies, rapid prototyping, computer aided design and manufacturing. This book, in addition to assisting students and researchers working in various areas of mechanical engineering, can also be useful to researchers and professionals working in various allied and interdisciplinary fields.
Undeservedly little attention is paid in the vast literature on the theories of vibration and plasticity to the problem of steady-state vibrations in elastoplastic bodies. This problem, however, is of considerable interest and has many important applications. The problem of low-cyclic fatigue of metals, which is now in a well de veloped state is one such application. The investigations within this area are actually directed to collecting experimental facts about repeated cyclic loadings, cf. 47J. Theoretical investigations within this area usually con sider the hysteretic loops and the construction of models of plasticity theory which are applicable to the analysis of repeated loadings and the study of the simplest dynamic problems. Another area of application of the theory of the vibration of elastoplas tic bodies is the applied theory of amplitude-dependent internal damping. Another name for this theory is the theory of energy dissipation in vibrat ing bodies. In accordance with the point of view of Davidenkov "internal damping" in many metals, alloys and structural materials under consider able stress presents exactly the effect of micro plastic deformations. There fore, it may be described by the methods of plasticity theory. This point of view is no doubt fruitful for the theory of energy dissipation in vibrating bodies, as it allows one to write down the constitutive equations appropri ate both for vibrational analysis of three-dimensional stress states and an investigation of nonharmonic deformation. These problems are known to be important for the theory of internal damping."
Vortex flow is one of the fundamental types of fluid and gas motion. These flows are the most spectacular in the form of concentrated vortices, characterized by the localization of vorticity (curl of velocity) in bounded regions of a space, beyond which the vorticity is either absent or rapidly falls down to zero. Concentrated vortices are often observed in nature, exemplified by atmospheric cyclones, whirlwinds and tornados, oceanic vortices, whirlpools on a water s- face, and ring vortices caused by explosive outburst of volcanoes. In technical - vices concentrated vortices form when flow separates from sharp edges of flying vehicles and ships. Among these are vortices flowing off the ends of airplane wings, and intentionally generated vortices for intensification of burning in c- bustion chambers, vortices in cyclonic devices used for mixing or separation of impurities in fluids and gases. One such remarkable and frequent type of conc- trated vortices is a vortex ring which constitutes a vortex tube closed into a t- oidal ring moving in a surrounding fluid like an isolated body out of contact with solid boundaries of the flow region if such boundaries exist. Formation and motion of vortex rings are important part of the dynamics of a continuum medium and have been studied for more than a century.
This work reviews methods for the experimental determination of concrete toughness and presents theories and models suitable for describing cracking and fracturing phenomena in plain and reinforced concrete. Test methods based on classsical linear fracture mechanics cannot be applied to laboratory sized concrete specimens. The book compares the currently used methods and presents recommended test procedures for mode I fracture/toughness using notched beam and other specimens. Crack propagation under mixed-mode loading (Mode II) is discussed and current test methods are extensively reviewed. Effects of loading rate, temperature and humidity effects are treated in a separate chapter. The book concludes with descriptions and recommendations of techniques for detecting the fracture process zone in concrete, in particular, pulse velocity and laser interferometry techniques. The introduction of the concepts of fracture toughness and fracture energy into structural concrete design codes means that the experimental determination of fracture porperties is ceasing to be an academic exercise and is becoming a technical need. This book has been prepared by RILEM Technical committee 89-FMT and
This volume sets out to present recent research findings on the applications of fracture mechanics to concrete structures. Papers from international contributors describe existing and new modelling techniques in the analysis of concrete materials and structures. Topics discussed include structural modelling, bending, shear, bond and anchorage. The book forms the proceedings of a RILEM workshop held in Sweden in 1989. It is dedicated to Professor Arne Hillerborg, whose contribution to fracture mechanics is also reviewed. |
![]() ![]() You may like...
Creativity in the British Television…
Brett Mills, Erica Horton
Paperback
R1,377
Discovery Miles 13 770
Crime and Local Television News…
Jeremy H. Lipschultz, Michael L Hilt
Hardcover
R4,465
Discovery Miles 44 650
Planet TV - A Global Television Reader
Lisa Parks, Shanti Kumar
Hardcover
R3,199
Discovery Miles 31 990
Media Work, Mothers and Motherhood…
Susan Liddy, Anne O'Brien
Paperback
R1,396
Discovery Miles 13 960
Media at War - Radio's Challenge to the…
Gwenyth L. Jackaway
Hardcover
R2,201
Discovery Miles 22 010
Life on Television - Content Analyses of…
Bradley S. Greenberg
Hardcover
R2,772
Discovery Miles 27 720
|