![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This volume contains the Proceedings of the First International Congress for the Advancement of Mechanism, Machine, Robotics and Mechatronics Sciences (ICAMMRMS-2017), held in Beirut, Lebanon, October 2017. The book consists of twenty papers in six different fields covering multiple angles of machine and robotics sciences: mechanical design, control, structural synthesis, vibration study, and manufacturing. This volume is of interest to mechanical as well as electrical engineers.
Piezoresistor Design and Applications provides an overview of these MEMS devices and related physics. The text demonstrates how MEMS allows miniaturization and integration of sensing as well as efficient packaging and signal conditioning. This text for engineers working in MEMS design describes the piezoresistive phenomenon and optimization in several applications. Includes detailed discussion of such topics as; coupled models of mechanics, materials and electronic behavior in a variety of common geometric implementations including strain gages, beam bending, and membrane loading. The text concludes with an up-to-date discussion of the need for integrated MEMS design and opportunities to leverage new materials, processes and MEMS technology. Piezoresistor Design and Applications is an ideal book for
design engineers, process engineers and researchers.
This textbook concerns thermal properties of bulk matter and is aimed at advanced undergraduate or first-year graduate students in a range of programs in science or engineering. It provides an intermediate level presentation of statistical thermodynamics for students in the physical sciences (chemistry, nanosciences, physics) or related areas of applied science/engineering (chemical engineering, materials science, nanotechnology engineering), as they are areas in which statistical mechanical concepts play important roles. The book enables students to utilize microscopic concepts to achieve a better understanding of macroscopic phenomena and to be able to apply these concepts to the types of sub-macroscopic systems encountered in areas of nanoscience and nanotechnology.
Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: * Modelling water diffusion * Damage induced by water * Accelerated testing * Including durability in design * In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to take account of them. Ensuring long term durability is not only necessary for safety reasons, but will also determine the economic viability of future marine structures.
This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
This book shows that evolutionary game theory can unravel how mutual cooperation, trust, and credit in a group emerge in organizations and institutions. Some organizations and institutions, such as insurance unions, credit unions, and banks, originated from very simple mutual-aid groups. Members in these early-stage mutual-aid groups help each other, making rules to promote cooperation, and suppressing free riders. Then, they come to "trust" not only each other but also the group they belong to, itself. The division of labor occurs when the society comes to have diversity and complexity in a larger group, and the division of labor also requires mutual cooperation and trust among different social roles. In a larger group, people cannot directly interact with each other, and the reputation of unknown people helps other decide who is a trustworthy person. However, if gossip spreads untruths about a reputation, trust and cooperation are destroyed. Therefore, how to suppress untrue gossip is also important for trust and cooperation in a larger group. If trustworthiness and credibility can be established, these groups are successfully sustainable. Some develop and evolve and then mature into larger organizations and institutions. Finally, these organizations and institutions become what they are now. Therefore, not only cooperation but also trust and credit are keys to understanding these organizations and institutions. The evolution of cooperation, a topic of research in evolutionary ecology and evolutionary game theory, can be applied to understanding how to make institutions and organizations sustainable, trustworthy, and credible. It provides us with the idea that evolutionary game theory is a good mathematical tool to analyze trust and credit. This kind of research can be applied to current hot topics such as microfinance and the sustainable use of ecosystems.
About the Series:
This is the first book which exploits concepts and tools of global nonlinear dynamics for bridging the gap between theoretical and practical stability of systems/structures, and for possibly enhancing the engineering design in macro-, micro- and nano-mechanics. Addressed topics include complementing theoretical and practical stability to achieve load carrying capacity; dynamical integrity for analyzing global dynamics, for interpreting/predicting experimental behavior, for getting hints towards engineering design; techniques for control of chaos; response of uncontrolled and controlled system/models in applied mechanics and structural dynamics by also considerung the effect of system imperfections; from relatively simple systems to multidimensional models representative of real world applications; potential and expected impact of global dynamics for engineering design.
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.
This book presents the theory of plates and shells on the basis of the three-dimensional parent theory. The authors explore the thinness of the structure to represent the mechanics of the actual thin three-dimensional body under consideration by a more tractable two-dimensional theory associated with an interior surface. In this way, the relatively complex three-dimensional continuum mechanics of the thin body is replaced by a far more tractable two-dimensional theory. To ensure that the resulting model is predictive, it is necessary to compensate for this 'dimension reduction' by assigning additional kinematical and dynamical descriptors to the surface whose deformations are modelled by the simpler two-dimensional theory. The authors avoid the various ad hoc assumptions made in the historical development of the subject, most notably the classical Kirchhoff-Love hypothesis requiring that material lines initially normal to the shell surface remain so after deformation. Instead, such conditions, when appropriate, are here derived rather than postulated.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This third volume concentrates on reviewing further relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such fluctuation relations and chaotic dynamics in physics, fractals and their applications in epileptic seizures, as well as chaos synchronization. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a 'recipe book' full of tried and tested, successful engineering applications.
A discussion of developments in the measurement and interpretation of advanced laboratory stress-strain testing of geomaterials. It includes a collection of case studies which apply the test results and is based on the activities of the technical committee No 29 of the ISSMGE.
Created in 1975, "LMT-Cachan" is a joint laboratory "ecole Normale Superieure de Cachan, Pierre & Marie Curie (Paris 6) University" and the French Research Council "CNRS" (Department of Engineering Sciences).
This book presents the physico-technical basis and current state of the technology of boronized layers. Special attention is given to the layer structure and morphology of allocated phases and distributions in a superficial zone of chemical compounds. Two- and multi-component phases of alloys and diffusion processes in a self-organizing mode are discussed. Surface hardening by boronizing increases the life time of mechanical tools. This is important for the mining industry, agriculture, textile and chemical industry. The book is important for thermochemical treatment and surface hardening of metals and alloys.
Mechanics of Biological Systems and Materials represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference & Exposition on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
Buried pipes are a highly efficient method of transport. In fact, only open channels are less costly to construct. However, the structural mechanics of buried pipes can be complicated, and imprecisions in the properties of the soil envelope are usually too great to justify lengthy, complicated analyses. Designers and engineers need principles and methods that simplify analysis and maximize their knowledge of the pipe's performance and performance limits.
This work seeks to provide a solid foundation to the principles and practices of dynamics and stability assessment of large-scale power systems, focusing on the use of interconnected systems - and aiming to meet the requirements of today's competitive and deregulated environments. It contains easy-to-follow examples of fundamental concepts and algorithmic procedures.
This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems, and nanotechnologies.
Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The contents of this work constitute a mix of investigations by those working on the mechanisms of vibration and means of their alleviation, and studies by those in industry who draw on the present state of knowledge of these mechanisms to avoid or solve flow-induced vibration and noise problems in industrial applications.
This book focuses on the nonlinear dynamics based on the vector fields with univariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems. It provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems. Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilbert's sixteenth problem. Possible singular dynamics of the two-dimensional quadratic systems are discussed in detail. The dynamics of equilibriums and one-dimensional flows in two-dimensional systems are presented. Saddle-sink and saddle-source bifurcations are discussed, and saddle-center bifurcations are presented. The infinite-equilibrium states are switching bifurcations for nonlinear systems. From the first integral manifolds, the saddle-center networks are developed, and the networks of saddles, source, and sink are also presented. This book serves as a reference book on dynamical systems and control for researchers, students, and engineering in mathematics, mechanical, and electrical engineering.
This the second volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010, bringing together 17 chapters on Applications of Non-Linear Dynamics. It presents early findings from experimental and computational investigations on Non-Linear Dynamics including studies on Dynamics of a System of Coupled Oscillators with Geometrically Nonlinear Damping, Assigning the Nonlinear Distortions of a Two-input Single-output System, A Multi-harmonic Approach to Updating Locally Nonlinear Structures, A Block Rocking on a Seesawing Foundation, and Enhanced Order Reduction of Forced Nonlinear Systems Using New Ritz Vectors.
This book consists of a collection of lectures prepared for a short course on "Fracture Mechanics Methodology" sponsored by the Advisory Group for Aerospace Research and Development (AGARD), part of the North Atlantic Treaty Organization (NATO). The course was organized jointly by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh University in the United States and Professor Luciano Faria from Centro de Mecanica e de Materiais das Universidade de Lisboa in Portugal. It was held in Lisbon from June 1 to 4, 1981. Dr. Robert Badaliance from the McDonnell Aircraft Company in St. Louis and Dr. Oscar Orringer from the Depart ment of Transportation in Cambridge are the other US lecturers while Professor Carlos Moura Branco from Portugal also lectured. The audience consisted of engineers from the Portuguese industry with a large portion from the aeronautical sector and others who are particularly interested to apply the fracture mechanics discipline for analyzing the integrity of structural components and fracture control methods. Particular. emphases were given to the fundamentals of fracture mechanics as applied to aircraft structures." |
![]() ![]() You may like...
Testing of Communicating Systems - IFIP…
Bernd Baumgarten, Heinz-Jurgen Burkhardt, …
Hardcover
R5,797
Discovery Miles 57 970
Fluid Dynamic Applications Of The…
Roberto Monaco, Luigi Preziosi
Hardcover
R1,800
Discovery Miles 18 000
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R83,942
Discovery Miles 839 420
Advances in Core Computer Science-Based…
George A. Tsihrintzis, Maria Virvou
Hardcover
R2,954
Discovery Miles 29 540
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,719
Discovery Miles 27 190
Antimicrobial Nanosystems - Fabrication…
Chaudhery Mustansar Hussain, Kabali Vijai Anand, …
Paperback
R4,858
Discovery Miles 48 580
|