![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.
This book presents central problems in the design, research and maintenance of large-size mining machines for open pits, mobile earth-moving machinery, hydraulic hammers for mining and civil engineering, and screening processes for bulk materials. It brings together the insights of numerous respected academics to offer a thorough and multifaceted overview of the topic. The first few chapters of the book deal with specific problems that frequently occur in machinery for open-pit mining. They focus on the resilience of large-size mining machines, degradation of steels used for supporting structures, and modelling of large-size rotary joints, as well as the noise hazards in connection with degradation processes. The book then moves on to discuss problems arising in earth-moving machinery, such as new approaches to the assessment of operation and maintenance, dynamic loads in front-end loader booms, and synchronic transfer of power from the engine to the driven wheels. The book concludes by discussing hydraulic hammers for mining and civil engineering, and screening processes for bulk materials that combine a vibroscreen with additional feed elements. The book is primarily intended for undergraduate and graduate mechanical engineering courses, but will also be of interest to researchers and mechanical engineers.
This is the Proceedings of the IUTAM Symposium on Solver Coupling and Co-Simulation that was held in Darmstadt, Germany, September 18-20, 2017. The symposium focused on recent advances in the development of numerical methods for solver coupling, like new explicit, implicit and semi-implicit co-simulation methods, new approaches for realizing variable communication-time grids, and advances in the stability and convergence analysis of solver coupling methods. Recent developments in the practical application of co-simulation methods, for instance new fields of application for solver coupling approaches, new developments in the parallelization of dynamic models with co-simulation techniques, and standardization of co-simulation interfaces, i.e. standardization of data and model exchange were also discussed. The book brings together the research results of leading scientists in applied mathematics, mechanics, and engineering science, thus contributing to further develop numerical methods for coupled simulations.
This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30-August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.
This second part of the work on creep modeling offers readers essential guidance on practical computational simulation and analysis. Drawing on constitutive equations for creep in structural materials under multi-axial stress states, it applies these equations, which are developed in detail in part 1 of the work, to a diverse range of examples.
Remarkable developments have taken place in the field of mechatronics in recent years. As symbolized by the "Janglish (Japanese English)" word, mechatronics, the technology and the social adaptation for introducing electronics into mechanics has been readily accepted in Japan. Currently robots are producing many products under computer control in Japanese factories, and supermarkets are utilizing automation systems for sample displays and sales. Further, the fast paced change in semiconductor chip technology has given rise to the need for micro-displacement positioning techniques. Actuators utilizing piezoelectridelectrostrictive effects are expected to meet these needs in mechanical components in the next micro mechatronic age. This book, in English, builds on my earlier publications concerned with ceramic actuators. The first edition titled "Essentials for Development and Applications of Piezoelectric Actuators" was published in 1984 through the Japan Industrial Technology Center. The second edition "PiezoelectriclElectrostrictive Actuators" published in Japanese through Morikita Pub. Co. (Tokyo) became one of the best sellers in that company in 1986, and was then translated into Korean. The problem solving edition "Piezoelectric Actuators -Problem Solving" was also published through Morikita, which was sold in conjunction with a 60 minute video tape to provide easy understanding."
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod (Russia). The chapters have been written by leading scientists in Nonlinear Physics, and the topics chosen so as to cover all the fields to which Prof. Ezersky himself contributed, by means of experimental, theoretical and numerical approaches. The volume will appeal to advanced students and researchers studying nonlinear waves and pattern dynamics, as well as other scientists interested in their applications in various natural media.
Provides background material needed to understand digital twin technology Presents computational facet of digital twin Includes physics based and surrogate model representations Addresses the problem of uncertainty in measurements and modeling Discusses practical case studies of implementation of digital twins addressing additive manufacturing, server farms, predictive maintenance, and smart cities
This book gathers selected papers presented at the 1st International Conference on Industrial Applications of Adhesives 2020 (IAA 2020). It covers a wide range of topics, including adhesive curing for electronic and automotive industries; adhesive testing with a torsion machine for rigorous mechanical properties determination; joint design using innovative techniques such as the meshless method; design methodologies in the automotive industry for joints under impact; temperature effects in joints typically found in civil engineering; and advanced nondestructive techniques such as terahertz spectroscopy to assess the durability of adhesive joints. Providing a review of the state-of the art in industrial applications of adhesives, the book serves as a valuable reference resource for researchers and graduate students interested in adhesive bonding.
This book focuses on two of the most important aspects of wind farm operation: decisions and control. The first part of the book deals with decision-making processes, and explains that hybrid wind farm operation is governed by a set of alternatives that the wind farm operator must choose from in order to achieve optimal delivery of wind power to the utility grid. This decision-making is accompanied by accurate forecasts of wind speed, which must be known beforehand. Errors in wind forecasting can be compensated for by pumping power from a reserve capacity to the grid using a battery energy storage system (BESS). Alternatives based on penalty cost are assessed using certain criteria, and MCDM methods are used to evaluate the best choice. Further, considering the randomness in the dynamic phenomenon in wind farms, a fuzzy MCDM approach is applied during the decision-making process to evaluate the best alternative for hybrid wind farm operation. Case studies from wind farms in the USA are presented, together with numerical solutions to the problem. In turn, the second part deals with the control aspect, and especially with yaw angle control, which facilitates power maximization at wind farms. A novel transfer function-based methodology is presented that controls the wake center of the upstream turbine(s); lidar-based numerical simulation is carried out for wind farm layouts; and an adaptive control strategy is implemented to achieve the desired yaw angle for upstream turbines. The proposed methodology is tested for two wind farm layouts. Wake management is also implemented for hybrid wind farms where BESS life enhancement is studied. The effect of yaw angle on the operational cost of BESS is assessed, and case studies for wind farm datasets from the USA and Denmark are discussed. Overall, the book provides a comprehensive guide to decision and control aspects for hybrid wind farms, which are particularly important from an industrial standpoint.
This book on flexible formwork for fluid architecture is a multi-faceted research that covers a broad field: from design to material and technology, and from history to future developments. It offers a pragmatic approach that can be extended with more cases, materials, techniques and methods for fluid architecture, and provides a better understanding of the main aspects of fluid architecture and to help them find the most suitable combinations of all aspects.The book is a challenging experience with many new discoveries, including two patents: one on moulding of fluid surfaces and one on 3D printing of fibre-reinforced ice. It also features two world records: the larges span (30 meters) and the highest thin shell structure (30,5 meters) in ice as well as a method for the construction of a fully laminated shell structure in insulated glass.
This book provides engineers and scientists with practical fundamentals for turbomachinery design. It presents a detailed analysis of existing procedures for the analysis of rotor and structure dynamics, while keeping mathematical equations to a minimum. Specific terminologies are used for rotors and structures, respectively, allowing the readers to clearly distinguish between the two. Further, the book describes the essential concepts needed to understand rotor failure modes due to lateral and torsional oscillations. It guides the reader from simple single-degree-of-freedom models to the most complex multi-degree-of-freedom systems, and provides useful information concerning steel pedestal stiffness degradation and other structural issues. Fluid-film bearing types and their dynamical behavior are extensively covered and discussed in the context of various turbomachinery applications. The book also discusses shaft alignment and rotor balancing from a practical point of view, providing readers with essential information to help them solve practical problems. As the main body of the book focuses on the diagnostics and description of case studies addressing the most pressing practical issues, together with their successful solutions, it offers a valuable reference guide, helping field engineers manage day-to-day issues with turbomachinery.
This book explores recent developments in theoretical research and data analysis of real-world complex systems, organized in three parts, namely Entropy, information, and complexity functions Multistability, oscillations, and rhythmic synchronization Diffusions, rotation, and convection in fluids The collection of works devoted to the memory of Professor Valentin Afraimovich provides a deep insight into the recent developments in complexity science by introducing new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to economics, genetics, engineering vibrations, as well as classic problems in physics, fluid and climate dynamics, and urban dynamics. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, and urban planners.
This book comprises select proceedings of the 12th Conference on Field and Service Robotics (FSR 2019) focusing on cutting-edge research carried out in different applications of robotics, including agriculture, search and rescue, aerial marine, industrial, and space. It focuses on experiments and demonstrations of robotics applied to complex and dynamic environments and covers diverse applications. The essays are written by leading international experts, making it a valuable resource for researchers and practicing engineers alike.
This book presents state-of-the-art experimental and modelling techniques for skin biophysics that are currently used in academic and industrial research. It also identifies current and future challenges, as well as a growing number of opportunities in this exciting research field. The book covers the basics of skin physiology, biology, microstructural and material properties, and progressively introduces the reader to established experimental characterisation protocols and modelling approaches. Advanced topics in modelling theories and numerical implementation are also presented. The book focusses especially on: 1. Basic physiology, molecular biology, microstructural and material properties of the skin. 2. Experimental characterisation techniques for the skin (including imaging): in vivo and in vitro techniques and combination of those with in silico approaches. 3. State-of-the-art constitutive models of the skin: elastic, anelastic and mechanobiological formulations (e.g. growth, ageing, healing). 4. Applications: mechanics, damage, biological growth, healing, ageing and skin tribology. This book is addressed to postgraduate students in biomedical/mechanical/civil engineering, (bio)physics and applied mathematics, postdoctoral researchers, as well as scientists and engineers working in academia and industry engaged in skin research, particularly, if at the cross-roads of physical experiments, imaging and modelling. The book is also be of interest to clinicians/biologists who wish to learn about the possibilities offered by modern engineering techniques for skin science research and, by so doing, provide them with an incentive to broaden their outlook, engage more widely with the non-clinical research communities and, ultimately, help cross-fertilising new ideas that will lead to better treatment plans and engineering solutions.
This book establishes the equations of limit analysis and provides a complete theoretical basis for foundation capacity, slope stability, and earth pressure. It is divided into three parts, the first of which discusses the failure mode and fundamental equation of soil mass. The second part addresses the solution methods for limit analysis, including the characteristic line method, stress field method, limit equilibrium method, virtual work equation-based generalized limit equilibrium method and generalized limit equilibrium method for the surface failure mode. Lastly, the third part examines the application of the limit analysis theory to soil mass.
This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches. Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.
The book addresses computational methods for solving the problem of vibration, response, loads and stability of a helicopter rotor blade modeled as a rotating beam with flap or out-of-plane bending. The focus is on explaining the implementation of the finite element method in the space and time domain for the free vibration, aeroelastic response and stability problems. The use of Floquet analysis for the aeroelastic stability analysis of rotor blades is also shown. The contents of the book will be useful to researchers in aerodynamics and applied mechanics, and will also serve well professionals working in the aerospace industry.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the 9th conference "Modern Engineering: Science and Education", held at the Peter the Great Saint Petersburg Polytechnic University in June 2020 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
This monograph provides a compendium of established and novel error estimation procedures applied in the field of Computational Mechanics. It also includes detailed derivations of these procedures to offer insights into the concepts used to control the errors obtained from employing Galerkin methods in finite and linearized hyperelasticity. The Galerkin methods introduced are considered advanced methods because they remedy certain shortcomings of the well-established finite element method, which is the archetypal Galerkin (mesh-based) method. In particular, this monograph focuses on the systematical derivation of the shape functions used to construct both Galerkin mesh-based and meshfree methods. The mesh-based methods considered are the (conventional) displacement-based, (dual-)mixed, smoothed, and extended finite element methods. In addition, it introduces the element-free Galerkin and reproducing kernel particle methods as representatives of a class of Galerkin meshfree methods. Including illustrative numerical examples relevant to engineering with an emphasis on elastic fracture mechanics problems, this monograph is intended for students, researchers, and practitioners aiming to increase the reliability of their numerical simulations and wanting to better grasp the concepts of Galerkin methods and associated error estimation procedures.
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics, injury biomechanics, biomechanics of the heart and vascular system, algorithms of computational biomechanics for medical image analysis, and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, Computational Biomechanics for Medicine: Measurments, Models, and Predictions provides an opportunity for specialists in the field to present their latest methodologies and advancements.
Provides a comprehensive introduction to aircraft performance and flight dynamics. Covers both jet and propellor-driven aircraft. Includes new content on vertical takeoff and landing, UAV launch, UAV recovery, use of rocket engine as the main engine, range for electric aircraft, electric engine, endurance for electric aircraft, gliding flight, pull-up, and climb-turn. Includes end-of-chapter problems, MATLABĀ® code and examples, and case studies. Features a Solutions Manual and Figure Slides for instructor use.
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance. |
You may like...
Reference for Modern Instrumentation…
R.N. Thurston, Allan D. Pierce
Hardcover
R4,086
Discovery Miles 40 860
Welding Deformation and Residual Stress…
Ninshu Ma, Dean Deng, …
Paperback
R3,925
Discovery Miles 39 250
Constitutive Modeling of Engineering…
Vladimir Buljak, Gianluca Ranzi
Paperback
R3,937
Discovery Miles 39 370
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,760
Discovery Miles 37 600
|