Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids."
The International Conference on the Theory of Machines and Mechanisms is organized every four years, under the auspices of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM) and the Czech Society for Mechanics. This eleventh edition of the conference took place at the Technical University of Liberec, Czech Republic, 4-6 September 2012. This volume offers an international selection of the most important new results and developments, in 73 papers, grouped in seven different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, dynamics of machines and mechanisms, linkages and cams, computational mechanics, rotor dynamics, biomechanics, mechatronics, vibration and noise in machines, optimization of mechanisms and machines, control and monitoring systems of machines, accuracy and reliability of machines and mechanisms, robots and manipulators to the mechanisms of textile machines.
This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18-22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful "state-of-the-art" reference for scientists and engineers involved in solving environmental problems of railways.
I want to thank R. L. Fosdick, M. E. Gurtin and W. O. Williams for their detailed criticism of the manuscript. I also thank F. Davi, M. Lembo, P. Nardinocchi and M. Vianello for valuable remarks prompted by their reading of one or another of the many previous drafts, from 1988 to date. Since it has taken me so long to bring this writing to its present form, many other colleagues and students have episodically offered useful comments and caught mistakes: a list would risk to be incomplete, but I am heartily grateful to them all. Finally, I thank V. Nicotra for skillfully transforming my hand sketches into book-quality figures. P. PODIO-GUIDUGLI Roma, April 2000 Journal of Elasticity 58: 1-104,2000. 1 P. Podio-Guidugli, A Primer in Elasticity. (c) 2000 Kluwer Academic Publishers. CHAPTER I Strain 1. Deformation. Displacement Let 8 be a 3-dimensional Euclidean space, and let V be the vector space associated with 8. We distinguish a point p E 8 both from its position vector p(p):= (p-o) E V with respect to a chosen origin 0 E 8 and from any triplet (~1, ~2, ~3) E R3 of coordinates that we may use to label p. Moreover, we endow V with the usual inner product structure, and orient it in one of the two possible manners. It then makes sense to consider the inner product a .
This book is about two special topics in rheological fluid mechanics: the elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of the book is on the mathematical and physical consequences of the elasticity of liquids; seventeen of twenty chapters are devoted to this. Constitutive models which are instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to steady flows of transonic type or to short wave instabilities which lead to ill-posed problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics. There is no doubt that liquids will respond like elastic solids to impulses which are very rapid compared to the time it takes for the molecular order associated with short range forces in the liquid, to relax. After this, all liquids look viscous with signals propagating by diffusion rather than by waves. For small molecules this time of relaxation is estimated as lQ-13 to 10-10 seconds depending on the fluids. Waves associated with such liquids move with speeds of 1 QS cm/s, or even faster. For engineering applications the instantaneous elasticity of these fluids is of little interest; the practical dynamics is governed by diffusion, *say, by the Navier-Stokes equations. On the other hand, there are other liquids which are known to have much longer times of relaxation.
This volume contains the papers presented at the IUT AM Symposium of "Mesoscopic Dynamics of Fracture Process and Materials Strength", held in July 2003, at the Hotel Osaka Sun Palace, Osaka, Japan. The Symposium was proposed in 2001, aiming at organizing concentrated discussions on current understanding of fracture process and inhomogeneous deformation governing the materials strength with emphasis on the mesoscopic dynamics associated with evolutional mechanical behaviour under micro/macro mutual interaction. The decision of the General Assembly of International Union of Theoretical and Applied Mechanics (IUT AM) to accept our proposal was well-timed and attracted attention. Driven by the development of new theoretical and computational techniques, various novel challenges to investigate the mesoscopic dynamics have been actively done recently, including large-scaled 3D atomistic simulations, discrete dislocation dynamics and other micro/mesoscopic computational analyses. The Symposium attracted sixty-six participants from eight countries, and forty two papers were presented. The presentations comprised a wide variety of fundamental subjects of physics, mechanical models, computational strategies as well as engineering applications. Among the subjects, discussed are (a) dislocation patterning, (b) crystal plasticity, (c) characteristic fracture of amorphous/nanocrystal, (d) nano-indentation, (e) ductile-brittle transition, (f) ab-initio calculation, (g) computational methodology for multi-scale analysis and others.
Explores the history and significance of interplanetary space missions. Features detailed explanations and mathematical methods for trajectory optimization. Includes detailed explanations and mathematical methods for mission analysis for interplanetary missions. Covers the introduction, mathematical methods, and applications of the N-body problem (N>2). Discusses navigation and targeting for interplanetary mission.
This monograph presents in detail the novel "wave" approach to finite element modeling of transient processes in solids. Strong discontinuities of stress, deformation, and velocity wave fronts as well as a finite magnitude of wave propagation speed over elements are considered. These phenomena, such as explosions, shocks, and seismic waves, involve problems with a time scale near the wave propagation time. Software packages for 1D and 2D problems yield significantly better results than classical FEA, so some FORTRAN programs with the necessary comments are given in the appendix. The book is written for researchers, lecturers, and advanced students interested in problems of numerical modeling of non-stationary dynamic processes in deformable bodies and continua, and also for engineers and researchers involved designing machines and structures, in which shock, vibro-impact, and other unsteady dynamics and waves processes play a significant role.
The problems and exercises in Strength and Stability that exceed the bounds of the ordinary university course in complexity and their statement are considered. The advanced problems liberalizing the readers and all- ing to see the connection of the Strength of Materials with some adjacent courses are collected in this book. All the problems and exercises are - compained with the detailed solutions. The set of new problems connected with the development of computer methods and with the application of composite materials in engineering are introduced in this publication. Author: Vsevolod I. Feodosiev Bauman Moscow State Technical University 2-nd Baumanskaya st. 5 105005 Moscow Russian Federation Translators: Sergey A. Voronov Sergey V. Yaresko Department of Applied Mechanics Bauman Moscow State Technical University 2-nd Baumanskaya st. 5 105005 Moscow Russian Federation E-mail: voronov@rk5. bmstu. ru Contents Part I. Problems and Questions 1. Tension, Compression and Torsion :::::::::::::::::::::::: 3 2. Cross-Section Geometry Characteristics: Bending::::::::: 17 3. Complex Stress State, Strength Criteria, Anisotropy ::::: 33 4. Stability :::::::::::::::::::::::::::::::::::::::::::::::::: 41 5. Various Questions and Problems :::::::::::::::::::::::::: 63 Part II. Answers and Solutions 1. Tension, Compression and Torsion :::::::::::::::::::::::: 81 2. Cross-Section Geometry Characteristics. Bending::::::::: 127 3. Complex Stress State, Strength Criteria, Anisotropy ::::: 195 4. Stability :::::::::::::::::::::::::::::::::::::::::::::::::: 219 5. Various Questions and Problems :::::::::::::::::::::::::: 359 References :::::::::::::::::::::::::::::::::::::::::::::::::::: 415 Preface This is a book, written by the famous late Russian engineer and educator Vsevolod I.
This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself.
The NATO Advanced Study Institute "Paleorift Systems with Emphasis on the Permian Oslo Rift" was held at Sundvollen near Oslo, Norway, 26. July - 5. August, 1977. The meeting included 6 field trips to various parts of the Oslo Region. 70 official participants and 16 observers from 14 countries attended the meeting. The majority of the invited lectures, short research papers and progress reports presented at the meeting are published in two volumes, of which this is volume No. II. A table of con tents for both volumes is include8 herein. The field trip guide is being published in the Nor gian Geological Survey Series, Vol. 327 (1978). We are especially pleased to acknowledge the efforts of the many authors of contributed papers, and the able assistance of secretaries, proof-readers and other staffmembers without whose help these volumes would not have been possible. Oslo, 20. February 1978. Ivar B. Ramberg Else-Ragnhild Neumann xi Organizing Committee members: O. Eldholm Department of Geology, University G. Grcentsnlie of Oslo J. Naterstad I.B. Ramberg (chairman) J.A. Dons Mineralogical-Geological Museum, B.T. Larsen (secretary) University of Oslo E.-R. Neumann (secretary) K.S. Heier (chairman) Norwegian Geological Survey S. Huseby B. Sundvoll M.A. Sellevoll Seismological Observatory, University of Bergen K. Storetvedt Geophysics Institute, University of Bergen P.M. Ihlen Geological Institute, University of Chr. Oftedahl Trondheim F.M. Vokes E.S. Husebye NTNF/NORSAR, 2007 Kjeller This volume is Scientific Report No. 40 of the Geodynamics Project
As Directors of this NATO Workshop, we welcome this opportunity to record formally our thanks to the NATO Scientific Affairs Division for making our meeting possible through generous financial support and encouragement. This meeting has two purposes: the first obvious one because we have collected scientists from East, far East and west to discuss new development in the field of fracture mechanics: the notch fracture mechanics. The second is less obvious but perhaps in longer term more important that is the building of bridges between scientists in the frame of a network called Without Walls Institute on Notch Effects in Fatigue and Fracture." Physical perception of notch effects is not so easy to understand as the presence of a geometrical discontinuity as a worst effect than the simple reduction of cross section. Notch effects in fatigue and fracture is characterised by the following fundamental fact: it is not the maximum local stress or stress which governs the phenomena of fatigue and fracture. The physic shows that a process volume is needed probably to store the necessary energy for starting and propagating the phenomenon. This is a rupture of the traditional "strength of material" school which always give the prior importance of the local maximum stress. This concept of process volume was strongly affirmed during this workshop.
Concrete has traditionally been known as a material used widely in the construction of roads, bridges and buildings. Since cost effectiveness has always been one of the more important aspects of design, concrete, when reinforced and/or prestressed, is finding more use in other areas of application such as floating marine structures, storage tanks, nuclear vessel containments and a host of other structures. Because of the demand for concrete to operate under different loading and environmen tal conditions, increasing attention has been paid to study concrete specimens and structure behavior. A subject of major concern is how the localized segregation of the constituents in concrete would affect its global behavior. The degree of nonhomogeneity due to material property and damage. by yielding and/or cracking depends on the size scale and loading rate under consideration. Segregation or clustering of aggregates at the macroscopic level will affect specimen behavior to a larger degree than it would to a large structure such as a dam. Hence, a knowledge of concrete behavior over a wide range of scale is desired. The parameters governing micro-and macro-cracking and the techniques for evaluating and observing the damage in concrete need to be better understood. This volume is intended to be an attempt in this direction. The application of Linear Elastic Fracture Mechanics to concrete is discussed in several of the chapters."
Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Gunter K. Klein, Goran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
These volumes contain contributions from a conference on the themes of measurement and prediction of residual stress in railroad rails. The subtitle, Effects of rail integrity and railroad economics', expresses an ultimate goal of reducing technical results to practical knowledge of interest to transportation engineers. Volume I contains elements of practical railway experience, laboratory tests, including experimental strees analysis, and theoretical evaluations of residual stress, crack propagation, and rail fracture. Observations of the effects of residual stress on rails in service, field tests, and laboratory experiments and recounted in the first three chapters of the volume. Experiments in which samples of new rail are subjected to precisely controlled rolling contact loads under laboratory conditions are dealt with in Chapters 4 and 5. Chapter 6 describes a method for programming loads on compact tension specimens to stimulate the stress intensity factor history of an internal transverse crack in rail head. Chapter 7 outlines a method for setting rail inspection intervals in service, based on what is presently known about the behaviour of transverse cracks in the rail head. The remainder of the volume deals with experimental stress analysis. Chapter 8 describes an elaborate procedure for combining stair change and length to evaluate internal stress distribution, and several other measurement techniques are also evaluated as possible alternates. Chapter 9 discusses the neutron diffraction method and its recent application to rail. Chapter 10 summarizes a technique based on MoirA(c) interferometry and reports on the first step in the developments of rail stress measurementprocedure based on this alternate. Chapter 13 concludes the experimental contributions with a summary of some typical measurements of the residual stress states in rails from several different producers and service environments in Europe. The reader will find that a reasonable qualitative picture of the rail residual stress field emerges from the experimental stress analyses. However, the details always vary from one rail to another, and there are sufficient differences to prevent the drawing of general quantitative conclusions from the experimental work alone. Theoretical and numerical analyses' are presented in Volume II, in the hope that models based on solid mechanics can correlate the experimental stress measurements and lead to a better understanding of the effects of residual stress upon crack propagation, fracture, and ultimately the economics of rail in the modern railroad environment.
In this volume on the mechanics of fracture of Portland cement concrete, the general theme is the connection between microstructural phenomena and macroscopic models. The issues addressed include techniques for observation over a wide range of scales, the influence of .microcracking on common measures of strength and de formability , and ultimately, the relationship between microstructural changes in concrete under load and its resistance to cracking. It is now commonly accepted that, in past attempts to force-fit the behavior of concrete into the rules of linear elastic fracture mechanics, proper attention has not been paid to scale effects. Clearly, the relationships among specimen size, crack length and opening, and characteristic material fabric dimensions have been, in comparison to their counterparts in metals, ceramics, and rocks, abused in concrete. Without a fundamental understanding of these relationships, additional testing in search of the elusive, single measure of fracture toughness has spawned additional confusion and frustration. No one is in a better position to document this observation than Professor Mindess.
The book focuses especially on the application of SHM technology to thin walled structural systems made from carbon fiber reinforced plastics. Here, guided elastic waves (Lamb-waves) show an excellent sensitivity to structural damages so that they are in the center of this book. It is divided into 4 sections dealing with analytical, numerical and experimental fundamentals, and subsequently with Lamb-wave propagation in fiber reinforced composites, SHM-systems and signal processing. The book is designed for engineering students as well as for researchers in the field of structural health monitoring and for users of this technology.
The concept of dynamics and control implies the combination of dynamic analysis and control synthesis. It is essential to gain insight into the dynamics of a nonlinear system with uncertainty if any new control strategy is designed to utilize nonlinearity. However, the new control strategy to be proposed must be robust enough so that any unexpected small disturbances will not alter the desired target of control. Such a concept is calling more attention to the modelling and simplification of dynamic systems subject to uncertain environment, the fine analysis and robust design of controlled dynamic systems resulting in new control strategies due to understanding of nonlinear phenomena and artificial intelligence, the combination of passive control, active control and semi-active control, as well as the interaction among sensors, controllers and actuators.
"There are three words that characterize this work: thoroughness, completeness and clarity. The authors are congratulated for taking the time to write an excellent linear systems textbook! a ]The authors have used their mastery of the subject to produce a textbook that very effectively presents the theory of linear systems as it has evolved over the last thirty years. The result is a comprehensive, complete and clear exposition that serves as an excellent foundation for more advanced topics in system theory and control." a "IEEE Transactions on Automatic Control "In assessing the present book as a potential textbook for our first graduate linear systems course, I find...[that] Antsaklis and Michel have contributed an expertly written and high quality textbook to the field and are to be congratulateda ]. Because of its mathematical sophistication and completeness the present book is highly recommended for use, both as a textbook as well as a reference." a "Automatica Linear systems theory plays a broad and fundamental role in electrical, mechanical, chemical and aerospace engineering, communications, and signal processing. A thorough introduction to systems theory with emphasis on control is presented in this self-contained textbook. The book examines the fundamental properties that govern the behavior of systems by developing their mathematical descriptions. Linear time-invariant, time-varying, continuous-time, and discrete-time systems are covered. Rigorous development of classic and contemporary topics in linear systems, as well as extensive coverage of stability and polynomial matrix/fractional representation, provide the necessary foundation for further study of systemsand control. Linear Systems is written as a textbook for a challenging one-semester graduate course; a solutions manual is available to instructors upon adoption of the text. The booka (TM)s flexible coverage and self-contained presentation also make it an excellent reference guide or self-study manual. ******* For a treatment of linear systems that focuses primarily on the time-invariant case using streamlined presentation of the material with less formal and more intuitive proofs, see the authorsa (TM) companion book entitled A Linear Systems Primer.
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration prediction of hydraulic machinery.
This book highlights relevant studies and applications in the area of robotics, which reflect the latest research, from interdisciplinary theoretical studies and computational algorithm development, to representative applications. It presents chapters on advanced control, such as fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis and fault tolerant control etc. and addresses topics including cloud robotics, cable-driven robots, two-wheeled robots, mobile robots, swarm robots, hybrid vehicle, and drones. Each chapter employs a uniform structure: background, motivation, quantitative development (equations), case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.), allowing readers to easily tailor the techniques to their own applications.
The book presents an updated state-of-the-art overview of the
general aspects and practical applications of the theories of thin
structures, through the interaction of several topics, ranging from
non-linear thin-films, shells, junctions, beams of different
materials and in different contexts (elasticity, plasticity, etc.).
Advanced problems like the optimal design and the modeling of thin
films made of brittle or phase-transforming materials will be
presented as well.
This book presents the theory of plates and shells on the basis of the three-dimensional parent theory. The authors explore the thinness of the structure to represent the mechanics of the actual thin three-dimensional body under consideration by a more tractable two-dimensional theory associated with an interior surface. In this way, the relatively complex three-dimensional continuum mechanics of the thin body is replaced by a far more tractable two-dimensional theory. To ensure that the resulting model is predictive, it is necessary to compensate for this 'dimension reduction' by assigning additional kinematical and dynamical descriptors to the surface whose deformations are modelled by the simpler two-dimensional theory. The authors avoid the various ad hoc assumptions made in the historical development of the subject, most notably the classical Kirchhoff-Love hypothesis requiring that material lines initially normal to the shell surface remain so after deformation. Instead, such conditions, when appropriate, are here derived rather than postulated.
This book was written to serve as both a professional's overview of the entire field of fatigue and fracture mechanics as it is currently practiced, and as an introduction to the application of the Fracture Mechanics of Ductile Metals (FMDM) theory. Particular benefits include: Application of fracture mechanics concepts to metallic structure, composites, welds and bolted joints. Extensive discussion of two welding techniques currently used in aerospace and aircraft structure, with emphasis given to state-of-the-art friction stir welding techniques. Life assessment of welded and bolted joints, with example problems. Damage tolerance and durability assessment of composites, not found in any other book published in this area. Presentation of Elastic-Plastic Fracture Mechanics (EPFM). Application of multi-specimen and single-specimen techniques to obtain fracture properties. Introduction to Fracture Mechanics of Ductile Metals (FMDM) theory to determine residual strength capability of structural metals. Discussion of techniques to determine the material fracture toughness properties without the need for laboratory testing. This is the first single text to present applications of fatigue and fracture mechanics to metals and composites and also include practical applications and example problems. It will be an essential reference for researchers, practitioners, and students alike. |
You may like...
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,796
Discovery Miles 27 960
Mechanics of Laminated Composite…
Francesco Tornabene, Nicholas Fantuzzi
Hardcover
R2,342
Discovery Miles 23 420
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
Anisotropic Doubly-Curved Shells…
Francesco Tornabene, Michele Bacciocchi
Hardcover
R3,455
Discovery Miles 34 550
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,644
Discovery Miles 36 440
|