![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This volume presents a collection of contributions on materials modeling, which were written to celebrate the 65th birthday of Prof. Nobutada Ohno. The book follows Prof. Ohno's scientific topics, starting with creep damage problems and ending with homogenization methods.
Complexity and dynamic order of controlled engineering systems is constantly increasing. Complex large scale systems (where "large" reflects the system's order and not necessarily its physical size) appear in many engineering fields, such as micro-electromechanics, manufacturing, aerospace, civil engineering and power engineering. Modeling of these systems often result in very high-order models imposing great challenges to the analysis, design and control problems. "Efficient Modeling and Control of Large-Scale Systems" compiles state-of-the-art contributions on recent analytical and computational methods for addressing model reduction, performance analysis and feedback control design for such systems. Also addressed at length are new theoretical developments, novel computational approaches and illustrative applications to various fields, along with: - An interdisciplinary focus emphasizing methods and approaches that can be commonly applied in various engineering fields -Examinations of applications in various fields including micro-electromechanical systems (MEMS), manufacturing processes, power networks, traffic control "Efficient Modeling and Control of Large-Scale Systems" is an ideal volume for engineers and researchers working in the fields of control and dynamic systems.
This textbook introduces readers to the detailed and methodical resolution of classical and more recent problems in analytical mechanics. This valuable learning tool includes worked examples and 40 exercises with step-by-step solutions, carefully chosen for their importance in classical, celestial and quantum mechanics. The collection comprises six chapters, offering essential exercises on: (1) Lagrange Equations; (2) Hamilton Equations; (3) the First Integral and Variational Principle; (4) Canonical Transformations; (5) Hamilton - Jacobi Equations; and (6) Phase Integral and Angular Frequencies Each chapter begins with a brief theoretical review before presenting the clearly solved exercises. The last two chapters are of particular interest, because of the importance and flexibility of the Hamilton-Jacobi method in solving many mechanical problems in classical mechanics, as well as quantum and celestial mechanics. Above all, the book provides students and teachers alike with detailed, point-by-point and step-by-step solutions of exercises in Lagrangian and Hamiltonian mechanics, which are central to most problems in classical physics, astronomy, celestial mechanics and quantum physics.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
The need for a general collection of electroacoustical reference and design data in graphical form has been felt by acousticians and engineers for some time. This type of data can otherwise only be found in a collection of handbooks. Therefore, it is the author's intention that this book serve as a single source for many electroacoustical reference and system design requirements. In form, the volume closely resembles Frank Massa's Acoustic Design Charts, a handy book dating from 1942 that has long been out of print. The basic format of Massa's book has been followed here: For each entry, graphical data are presented on the right page, while text, examples, and refer ences appear on the left page. In this manner, the user can solve a given problem without thumbing from one page to the next. All graphs and charts have been scaled for ease in data entry and reading. The book is divided into the following sections: A. General Acoustical Relationships. This section covers the behavior of sound transmis sion in reverberant and free fields, sound absorption and diffraction, and directional characteris tics of basic sound radiators. B. Loudspeakers. Loudspeakers are discussed in terms of basic relationships regarding cone excursion, sensitivity, efficiency, and directivity index, power ratings, and architectural layout. c. Microphones. The topics in this section include microphone sensitivity and noise rating, analysis of directional properties, stereo microphone array characteristics, proximity effects, and boundary conditions. D. Signal Transmission."
This collection of papers is a state of the art presentation of theories and methods related to the problem of the behaviour of mechanical structures under variable loads beyond their elastic limit In particular, the problems of shakedown, ratchetting, transient and asymptotic cyclic states are addressed. The volume is composed of four chapters devoted to material modelling for cyclic loading conditions; general theory of accommodated states of structures; effects of changes of the geometry on the inelastic structural response; and numerical techniques with applications to particular engineering problems. It was aimed to provide a unified approach in order to understand both inelastic material and structural response under variable loading conditions. The attempt to extend the classical shakedown theory of Melan and Koiter to geometrically non-linear problems is presented in several papers. The industrial application of cyclic plasticity to the analysis and the design of pressure bellows, compensators, turbine disks, or flange connections under thermal and pressure cycles illustrates the great potential of the numerical techniques developed for this purpose using mostly min-max approaches. The treatment of railway problems and the analysis and optimisation of pavements are further examples of important areas of applications. Emphasis was laid on approaches that take into account the fact that loading histories are often not precisely known Therefore, the center of interest lies in other than step by step calculation methods.
In the preliminary stage of designing new structural hardware that must perform a given mission in a fluctuating load environment, there are several factors the designers should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must be able to withstand the environment in question without failure. Therefore, a comprehen sive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems. These problems include the prevention of failures resulting from preexisting cracks in the parent material, welds or that develop under cyclic loading environment during the life of the structure. The importance of fatigue and fracture in nuclear, pressure vessel, aircraft, and aerospace structural hardware cannot be overemphasized where safety is of utmost concern. This book is written for the designer and strength analyst, as well as for the material and process engineer who is concerned with the integrity of the structural hardware under load-varying environments in which fatigue and frac ture must be given special attention. The book is a result of years of both acade mic and industrial experiences that the principal author and co-authors have accumulated through their work with aircraft and aerospace structures."
This volume records the Symposium on 'Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics', held at the University of Nottingham from 30th August to 3rd September 1994, sponsored by the International Union of Theoretical and Applied Mechanics and held in conjunction with the In- ternational Society for the Interaction of Mechanics and Mathematics. The advent of composite materials, together with their widespread use in recent years, has provided a powerful stimulus for advances in several somewhat ne- glected areas of solid mechanics. Exploitation of fibre-reinforced solids and laminates has rekindled interest in the theory and application of anisotropic elasticity and motivated study of many aspects of material inhomogeneity. The need to understand fibre-matrix interactions, especially in modelling metal- matrix composites and the forming of thermoplastic components has fostered advances in plasticity and viscoelasticity theory, to describe phenomena such as deformation-induced inhomogeneity and anisotropy. Plasticity and flow of granular media are also intrinsically nonlinear, giving rise, for example, to highly anisotropic and strongly localized effects, such as shear bands. Most materials contain impurities. These inclusions, even if microscopically isotropic, cause macroscopic anisotropy in an 'effective-medium' theory. Dy- namic behaviour is even more complex, since wave propagation reveals both attenuation and dispersion effects. Increased interest in finer-scaled compos- ites (nanotechnology and superlattices) and ultra-high frequency techniques continue to reveal new effects, due to inhomogeneity and microstructure. An example included here is lattice-induced dispersion for certain surface waves of relatively long wavelength.
The general topic of the symposium follows mechanisms development through all stages of conception, modeling, analysis, synthesis and control to advanced product design. This volume brings together the latest results in the field and celebrates a series of conferences that has been running for 40 years. The contributors and the editor are world leaders in their field.
This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.
This book presents recent research on damage mechanics with finite elements. Particular emphasis is laid on programming the finite element method to incorporate applications of damage mechanics. This textbook for graduates and researchers in civil, mechanical, aerospace engineering and materials science deals with the practical applications of damage mechanics, which have not appeared before in the literature. The book contains research on the separation of voids and cracks in continuum damage mechanics. An educational version of a finite element program for damage mechanics is included on a CD-ROM.
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain. Written for: Researchers, engineers, graduate students in complexity, applied nonlinear dynamics, neuroscience
In the first, 1986, edition of this book, inverse problems in vibration were interpreted strictly: problems concerning the reconstruction of a unique, undamped vibrating system, of a specified type, from specified vibratory behaviour, particularly specified natural frequencies and/or natural mode shapes. In this new edition the scope of the book has been widened to include topics such as isospectral systems- families of systems which all exhibit some specified behaviour; applications of the concept of Toda flow; new, non-classical approaches to inverse Sturm-Liouville problems; qualitative properties of the modes of some finite element models; damage identification. With its emphasis on analysis, on qualitative results, rather than on computation, the book will appeal to researchers in vibration theory, matrix analysis, differential and integral equations, matrix analysis, non-destructive testing, modal analysis, vibration isolation, etc.
This handbook is a collection of elasticity solutions. Many of the results presented here cannot be found in textbooks and are available in scientific articles only. Some of them were obtained in the closed form quite recently. The solutions have been thoroughly checked and reduced to a "user friendly" form. Every effort has been made to keep the book free of misprints. The theory of elasticity is a mature field and a large number of solutions are ava- able. We had to make choices in selecting material for this book. The emphasis is made on results relevant to general solid mechanics and materials science appli- tions. Solutions related to structural mechanics (beams, plates, shells, etc.) are left out. The content is limited to the linear elasticity. We are grateful to B. Nuller for several clarifications concerning the contact pr- lem and to V. Levin for suggestions on Eshelby's problem. We also appreciate a n- ber of remarks and comments made by L. Germanovich, I. Sevostianov, O. Zharii and R. Zimmerman. We are particularly indebted to E. Karapetian for a substantial help in putting the material together.
Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.
Integrating macroscopic properties with observations at lower levels, this book details advances in multiscale modelling and analysis pertaining to classes of composites which either have a wider range of relevant microstructural scales, such as metals, or do not have a very well-defined microstructure, e.g. cementitious or ceramic composites. The IUTAM symposia proceedings provide a platform for extensive further discussion and research.
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Fryba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
The book addresses the problem of calculation of d-dimensional integrals (conditional expectations) in filter problems. It develops new methods of deterministic numerical integration, which can be used to speed up and stabilize filter algorithms. With the help of these methods, better estimates and predictions of latent variables are made possible in the fields of economics, engineering and physics. The resulting procedures are tested within four detailed simulation studies.
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
The interest of the applied mechanics community in chaotic dynamics of engineering systems has exploded in the last fifteen years, although research activity on nonlinear dynamical problems in mechanics started well before the end of the Eighties. It developed first within the general context of the classical theory of nonlinear oscillations, or nonlinear vibrations, and of the relevant engineering applications. This was an extremely fertile field in terms of formulation of mechanical and mathematical models, of development of powerful analytical techniques, and of understanding of a number of basic nonlinear phenomena. At about the same time, meaningful theoretical results highlighting new solution methods and new or complex phenomena in the dynamics of deterministic systems were obtained within dynamical systems theory by means of sophisticated geometrical and computational techniques. In recent years, careful experimental studies have been made to establish the actual occurrence and observability of the predicted dynamic phenomena, as it is vitally needed in all engineering fields. Complex dynamics have been shown to characterize the behaviour of a great number of nonlinear mechanical systems, ranging from aerospace engineering applications to naval applications, mechanical engineering, structural engineering, robotics and biomechanics, and other areas. The International Union of Theoretical and Applied Mechanics grasped the importance of such complex phenomena in the Eighties, when the first IUTAM Symposium devoted to the general topic of nonlinear and chaotic dynamics in applied mechanics and engineering was held in Stuttgart (1989).
The IUT AM Symposium on "Micromechanics of Plasticity and Damage of Multiphase Materials" was held in Sevres, Paris, France, 29 August - 1 September 1995. The Symposium was attended by 83 persons from 18 countries. In addition 17 young French students attended the meeting. During the 4 day meeting, a total of 55 papers were presented, including 24 papers in the poster sessions. The meeting was divided into 7 oral and 3 poster sessions. The 7 oral sessions were the following: - Plasticity and Viscoplasticity I and II; - Phase transformations; - Damage I and II; - Statistical and geometrical aspects; - Cracks and interfaces. Each poster session was introduced by a Rapporteur, as follows: - Session I (Plasticity and Viscoplasticity): G. Cailletaud; - Session 2 (Damage): D. Franc; ois; - Session 3 (Phase transformation; statistical and geometrical aspects): D. Jeulin. The main purpose of the Symposium was the discussion of the state of the art in the development of micromechanical models used to predict the macroscopic mechanical behaviour of mUltiphase solid materials. These materials consist of at least two chemically different phases, present either initially or formed during plastic deformation, when a strain-induced phase transformation takes place. One session was devoted to the latter case. Continuously strengthened composite materials, containing long fibers, were out of the scope of the Symposium.
by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
This book represents the HELS (Helmholtz equation least squares) theory and its applications for visualizing acoustic radiation from an arbitrarily shaped vibrating structure in free or confined space. It culminates the most updated research work of the author and his graduate students since 1997. The book contains six chapters. The first serves as a review of the fundamentals in acoustics and the rest cover five specific topics on the HELS theory. |
![]() ![]() You may like...
Our Words, Our Worlds - Writing On Black…
Makhosazana Xaba
Paperback
|