![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
A systematic treatment of the thermal and elastic deformation of bearings, seals, and other machine elements under a wide variety of conditions, with particular emphasis on failure mechanisms when high speeds or loads cause significant frictional heating and on methods for predicting and avoiding such failures. Intended for designers and mechanical engineers responsible for high-performance machinery, the book is unique in discussing instabilities driven by frictional heating and thermal expansion and in developing a theoretical approach to engineering design in those cases in which the thermal problems are pivotal. It thus provides a guide as to what is important in the development of high-performance engineering systems. References to recent publications, new material that fill gaps in the literature, a consistent nomenclature, and a large number of worked examples make this a useful text and reference for both researchers and practising engineers.
Computational Mechanics in solids, structures and coupled problems in engineering is today a mature science with applications to major industrial designs. This book reflects the state of art and it is written by some of the world leading authorities in this field, addressing such topics as: design and topology optimisation, inverse engineering, multibody dynamics, non-linear and railway dynamics, non-linear and textile composites, sandwich structures, uncertainty and reliability of structures, micromechanics of biological materials, computational geometry, multiscale strategies, discrete and mesh free elements, hybrid crack element, adaptive mesh generation, neural networks, structural model validation, vibro-acoustics, active aeroelastic structures, shells with incompressible flows, fluid-structure interaction, aeroelasticity, fluid-saturated and damage porous media and ceramics, high porosity solids, multiphase viscous porous material and masonry.
This second edition is an enlarged, completely updated, and extensively revised version of the authoritative first edition. It is devoted to the detailed study of illuminating specific problems of nonlinear elasticity, directed toward the scientist, engineer, and mathematician who wish to see careful treatments of precisely formulated problems. Special emphasis is placed on role of nonlinear material response. The mathematical tools from nonlinear analysis are given self-contained presentations where they are needed. This book begins with chapters on (geometrically exact theories of) strings, rods, and shells, and on the applications of bifurcation theory and the calculus of variations to problems for these bodies. The book continues with chapters on tensors, three-dimensional continuum mechanics, three-dimensional elasticity, large-strain plasticity, general theories of rods and shells, and dynamical problems. Each chapter contains a wealth of interesting, challenging, and tractable exercises.
This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.
This book is devoted to applications of complex nonlinear dynamic phenomena to real systems and device applications. In recent decades there has been significant progress in the theory of nonlinear phenomena, but there are comparatively few devices that actually take this rich behavior into account. The text applies and exploits this knowledge to propose devices which operate more efficiently and cheaply, while affording the promise of much better performance.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
Mechanical Vibrations: Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of model analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students, researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text.
This book provides a general introduction to the topic of buildings for resistance to the effects of abnormal loadings. The structural design requirements for nuclear facilities are very unique. In no other structural system are extreme loads such as tornadoes, missile and loud interaction, earthquake effects typical in excess of any recorded historical data at a site, and postulated system accident at very low probability range explicitly, considered in design. It covers the whole spectrum of extreme load which has to be considered in the structural design of nuclear facilities and reactor buildings, the safety criteria, the structural design, the analysis of containment. Test case studies are given in a comprehensive treatment. Each major section contains a full explanation which allows the book to be used by students and practicing engineers, particularly those facing formidable task of having to design complicated building structures with unusual boundary conditions.
from reviews of the first edition "This book is a comprehensive treatise... with a significant application to structural mechanics_ the author has provided sufficient applications of the theoretical principles_ such a connection between theory and application is a common theme and quite an attractive feature._ The book is a unique volume which contains information not easily found throughout the related literature." _ APPL. MECH. REV. This text, suitable for courses on fluid and solid mechanics, continuum mechanics, and strength of materials, offers a unified presentation of the theories and practical principles common to all branches of solid and fluid mechanics. For the student, each chapter proceeds from basic material to advanced topics usually covered at the graduate level. The presentation is self -contained, the only prerequisites are the basic algebra and analysis that are usually taught in the first and second years of an undergraduate engineering curriculum. Extensive problem sets, new in this edition, make the text more useful than before. For the practicing engineer, Mechanics of Solids and Fluids provides an up-to-date synopsis of the principles of solid and fluid mechanics combined with illustrative examples. The conservation laws for mass, momentum and energy are considered for both material and control volumes. The discussion of elastostatics includes thermal stress analysis and is extended to linear viscoelasticity by means of the correspondence principle. The Ritz-
Constantly increasing attention is paid in the course 'Vibration 'Theory' to vibration of mechanical systems with distributed parameters, since the real elements of machines, devices, and constructions are made of materials that are not perfectly rigid. 'Therefore, vibrations of the objects including, for ex ample, rod elastic elements excite the vibrations of these elements, which can produce a substantial effect on dynamic characteristics of moving objects and on readings of instruments. For a mechanical engineer working in the field of design of new technolo gies the principal thing is his know-how in developing the sophisticated math ematical models in which all specific features of operation of the objects under design in real conditions are meticulously taken into account. So, the main emphasis in this book is made on the methods of derivation of equations and on the algorithms of solving them (exactly or approximately) taking into con sideration all features of actual behavior of the forces acting upon elastic rod elements. 'The eigen value and eigen vector problems are considered at vibrations of curvilinear rods (including the rods with concentrated masses). Also consid ered are the problems with forced vibrations. When investigating into these problems an approximate method of numerical solution of the systems of lin ear differential equations in partial derivatives is described, which uses the principle of virtual displacements. Some problems are more complicated than others and can be used for practical works of students and their graduation theses."
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.
The ?rst International Meeting of Advances in Robot Kinematics, ARK, occurred in September 1988, by invitation to Ljubljana, Slovenia, of a group of 20 int- nationally recognized researchers, representing six different countries from three continents. There were 22 lectures and approximately 150 attendees. This success of bringing together excellent research and the international community, led to the formation of a Scienti?c Committee and the decision to repeat the event biannually. The meeting was made open to all individuals with a critical peer review process of submitted papers. The meetings have since been continuously supported by the Jozef ? Stefan Institute and since 1992 have come under patronage of the Inter- tionalFederationforthePromotionofMechanismandMachineScience(IFToMM). Springer published the ?rst book of the series in 1991 and since 1994 Kluwer and Springer have published a book of the presented papers every two years. The papers in this book present the latest topics and methods in the kinem- ics, control and design of robotic manipulators. They consider the full range of - botic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. The meeting included recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, the analysis, modeling and simulation of human body motion, the mobility analysis of protein molecules and the development of systems which integrate man and - chine.
Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear characteristics of the oil-film bearings, some nonlinear responses of the rotor besides the harmonic response 1X, such as oil whirl, oil whip, and modulated frequencies occur in Waterfall diagram. Additionally, the influences of the surface roughness and oil characteristics on the rotor behavior, friction, and wear are discussed. This book is written by an industrial R&D expert with many years of experience in the automotive and turbocharger industries. The all-in-one book of turbochargers is intended for scientific and engineering researchers, practitioners working in the rotordynamics field of automotive turbochargers, and graduate students in applied physics and mechanical engineering.
This book systematically discusses the modeling and application of transfer manipulation for flexible electronics packaging, presenting multiple processes according to the geometric sizes of the chips and devices as well as the detailed modeling and computation steps for each process. It also illustrates the experimental design of the equipment to help readers easily learn how to use it. This book is a valuable resource for scholars and graduate students in the research field of microelectronics.
This monograph provides a comparative study between failure probabilities and collapse frequencies in structural bridge engineering. The author presents techniques to resolve and extend the limitations of both parameters, taking also into account the time dependency of both parameters. The book includes available data and case studies and thus presents patterns to identify potential weaknesses and challenges in bridge maintenance. The target audience primarily comprises practicing engineers in the field of bridge engineering, but the book may also be beneficial for academic researchers alike.
Inverse and crack identification problems are of paramount importance for health monitoring and quality control purposes arising in critical applications in civil, aeronautical, nuclear, and general mechanical engineering. Mathematical modeling and the numerical study of these problems require high competence in computational mechanics and applied optimization. This is the first monograph which provides the reader with all the necessary information. Delicate computational mechanics modeling, including nonsmooth unilateral contact effects, is done using boundary element techniques, which have a certain advantage for the construction of parametrized mechanical models. Both elastostatic and harmonic or transient dynamic problems are considered. The inverse problems are formulated as output error minimization problems and they are theoretically studied as a bilevel optimization problem, also known as a mathematical problem with equilibrium constraints. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. The book provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statics and dynamics and includes several thoroughly discussed applications, for example, the impact-echo nondestructive evaluation technique. Audience: The book will be of interest to structural and mechanical engineers involved in nondestructive testing and quality control projects as well as to research engineers and applied mathematicians who study and solve related inverse problems. People working on applied optimization and soft computing will find interesting problems to apply to their methods and all necessary material to continue research in this field.
The symposiumwas motivatedby theincreasing need for modelling of material behaviourundervarious mechan icalconditions. This need is driven by the evolut ion ofcomputer capac ityand the resulting ability for engineers and scien tiststo address complexproblems . Reliable models formaterialbehaviour, including accurate numericalvalues of parameters ,are necessary for a continued beneficial development ofthe computational side of solid mechanics .High rate plasticity ,thermally assisted creep and phasetransformationsare only a fewexamplesof areas where more accurate modelsare needed. Experiments are necessary for the establishment ofmodels and parameters , and modified versionsof conventional test methods can make important contributions . Also modern optical methodsoffer a highpotentialfor futureexperimental development. Numerical simulations ofexperiments and so-called inverse modelling arealso frequentlyused techniques. The aim of the symposium was to bring together researchers with an interest in the areaofexperimental and computational aspects ofmaterial modelling for exchange and discussionofpromising methodsandresults. Abisko,a national park in the Swedish mountain district about 200 km north of the arctic circle and about one hourve dri from the airport ofKiruna,was chosen for the symposium. The tourist hotel in the park , overlookinga beautiful lake , offered a suitablevenue for the symposium. This environment with tracks for short walks (and long hikes),goals for small excursions and a hotel with restaurant and bar ve the ga delegatesmany opportunitiesto meet , socialiseand discuss during breaks and evenings.
This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials' performance and to design and optimize structures in different fields of engineering applications.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. The first volume of this two-volume work deals with elastic and elastoplastic behaviour; this second volume continues with viscoelasticity, damage, fracture (resistance to cracking) and contact mechanics. As in Volume I, the treatment starts from the active mechanisms on the microscopic scale and develops the laws of macroscopic behaviour. Chapter I deals with viscoplastic behaviour, as shown, for example, at low temperatures by the effects of oscillatory loads and at high temperatures by creep under steady load. Chapter 2 treats damage phenomena encountered in all materials - for example, metals, polymers, glasses, concretes - such as cavitation, fatigue and stress-corrosion cracking. Chapter 3 treats those concepts of fracture mechanics that are needed for the understanding of resistance to cracking and Chapter 4 completes the volume with a survey of the main concepts of contact mechanics. As with Volume I, each chapter has a set of exercises, either with solutions or with indications of how to attack the problem; and there are many explanatory diagrams and other illustrations.
This text is the primary recommendation of the UK Engineering
Council Faculty of Technology to all British universities as of
approved standard and quality for use as a text for the Board's own
examinations. It introduces the fundamental concepts and principles
of statics and stress analysis as the essential reading for first
year engineering students. Worked examples from the authors
experience reinforce comprehension of key concepts. Tutorial
solutions with explanation in extended detail have been provided
for students. Key elements include: use of free-body diagrams to
help problem solving; coverage of composite materials; torsion of
circular and non-circular sections; and the matrix-displacement
method.
This book is a monograph about Mechatronic Reliability, an emerging branch of modern technology. It addresses professionals, graduate students and even senior undergraduates engaged in the research of solid mechanics, material sciences, microelectronics, solid state physics and mechanical engineering. The framework of mechatronic reliability unfolds in four parts, according to the sequence of electric failures, mechanical-electrical coupling, domain switching and mass-flow instability. Various subjects treated in the book are positioned along the interface between mechanics and electronics. Typical failure modes for materials under electrical and/or mechanical loading are identified. Analyses devoted to those failure modes reveal their mechanisms, and establish new theories for the assessment of their reliability.
Cavity expansion theory is a simple theory that has found many applications in geotechnical engineering. In particular, it has been used widely to analyse problems relating to deep foundations, in-situ testing, underground excavation and tunnelling, and wellbore instability. Although much research has been carried out in this field, all the major findings are reported in the form of reports and articles published in technical journals and conference proceedings. To facilitate applications and further development of cavity expansion theory, there is a need for the geotechnical community to have a single volume presentation of cavity expansion theory and its applications in solid and rock mechanics. This book is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of cavity expansion theory and its applications in geomechanics. Audience: Although it is intended primarily as a reference book for civil, mining, and petroleum engineers who are interested in cavity expansion methods, the solutions presented in the book will also be of interest to students and researchers in the fields of applied mechanics and mechanical engineering.
Advanced undergraduate students in Engineering and Materials Science should have a good understanding of the property of elasticity. This book will be a vital resource for the complete study of elasticity as it is the only book on the particular subject of anisotropic materials. Homogenous materials, such as rubber bands, are said to be isotropic, and the mechanics of isotropic materials are easy to study and their problems easy to solve. However, for the whole new class of materials called composites, where two or more substances are combined for greater strength or superconductive properties, solving problems of the material's anisotropic elasticity are considerably more difficult. This book, however, is the first text to deal with the problems of composite, or anisotropic materials and their elasticity.
Joints in components or structures incur a weight penalty, are a source of failure, cause manufacturing problems, and are unfortunately unavoidable in most structures ranging from aircraft, and spacecraft to ships and offshore platforms, to automobiles, bridges and buildings. An important requirement for the complete design of practical structures is the development of attachment methods and joint designs. Recent Advances in Structural Joints and Repairs for Composite Materials provides an up-to-date account of adhesively bonded and mechanically fastened joints and repairs. Audience: This book will prove to be an informative resource for all engineers and researchers involved with joining and repair of composite structures. |
![]() ![]() You may like...
Design for the Unexpected - From Holonic…
Paul Valckenaers, Hendrik Van Brussel
Paperback
R2,908
Discovery Miles 29 080
Small Fatigue Cracks - Mechanics…
K.S. Ravichandran, Y. Murakami, …
Hardcover
R4,116
Discovery Miles 41 160
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,896
Discovery Miles 38 960
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,399
Discovery Miles 33 990
|