Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green's functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green's function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.
This book focuses on the analysis and design of advanced techniques for on-line automatic computational monitoring of pipelines and pipe networks. It discusses how to improve the systems' security considering mathematical models of the flow, historical flow rate and pressure data, with the main goal of reducing the number of sensors installed along a pipeline. The techniques presented in the book have been implemented in digital systems to enhance the abilities of the pipeline network's operators in recognizing anomalies. A real leak scenario in a Mexican water pipeline is used to illustrate the benefits of these techniques in locating the position of a leak. Intended for an interdisciplinary audience, the book addresses researchers and professionals in the areas of mechanical, civil and control engineering. It covers topics on fluid mechanics, instrumentation, automatic control, signal processing, computing, construction and diagnostic technologies.
This fifth edition of "Engineering Physiology" has the same purpose as the earlier prints: to provide physiological information which engineers, designers, supervisors, managers and other planners need to make work and equipment "fit the human." Chapters have been revised, figures and tables updated. New material discusses, among other topics, models of the human body that provide practical and design-oriented information, biomechanics describing the body's capabilities and limitations, effects of shift work / sleep loss on attitude and performance, and new techniques to measure body sizes and the resultant changes in applications of that information. The book does not replace standard (biological-medical-chemical) textbooks on human physiology; instead, it provides information on human features and functions which are basic to ergonomics or human (factors) engineering, terms often used interchangeably. It helps lay the foundations for teamwork among engineers and physiologists, biologists and physicians. Bioengineering topics concern bones and tissues, neural networks, biochemical processes, bio- and anthromechanics, biosensors, perception of information and related actions, to mention just a few areas of common interest. Such understanding provides the underpinnings for devising work tasks, tools, workplaces, vehicles, work-rest schedules, human-machine systems, homes and designed environments so that we humans can work and live safely, efficiently and comfortably.
This book reviews the most common state-of-the art methods for substructuring and model reduction and presents a framework that encompasses most method, highlighting their similarities and differences. For example, popular methods such as Component Mode Synthesis, Hurty/Craig-Bampton, and the Rubin methods, which are popular within finite element software, are reviewed. Similarly, experimental-to-analytical substructuring methods such as impedance/frequency response based substructuring, modal substructuring and the transmission simulator method are presented. The overarching mathematical concepts are reviewed, as well as practical details needed to implement the methods. Various examples are presented to elucidate the methods, ranging from academic examples such as spring-mass systems, which serve to clarify the concepts, to real industrial case studies involving automotive and aerospace structures. The wealth of examples presented reveal both the potential and limitations of the methods.
This self-contained book provides an introduction to the flow-oscillator modeling of vortex-induced bluff-body oscillations. One of the great challenges in engineering science also happens to be one of engineering design - the modeling, analysis and design of vibrating structures driven by fluid motion. The literature on fluid-structure interaction is vast, and it can be said to comprise a large fraction of all papers published in the mechanical sciences. This book focuses on the vortex-induced oscillations of an immersed body, since, although the importance of the subject has long been known, it is only during the past fifty years that there have been concerted efforts to analytically model the general behavior of the coupling between vortex shedding and structural oscillations. At the same time, experimentalists have been gathering data on such interactions in order to help define the various regimes of behavior. This data is critical to our understanding and to those who develop analytical models, as can be seen in this book. The fundamental bases for the modeling developed in this book are the variational principles of analytical dynamics, in particular Hamilton's principle and Jourdain's principle, considered great intellectual achievements on par with Newton's laws of motion. Variational principles have been applied in numerous disciplines, including dynamics, optics and quantum mechanics. Here, we apply variational principles to the development of a framework for the modeling of flow-oscillator models of vortex-induced oscillations.
The book deals with atomistic properties of solids which are determined by the crystal structure, interatomic forces and atomic displacements influenced by the effects of temperature, stress and electric fields. The book gives equal importance to experimental details and theory. There are full chapters dedicated to the tensor nature of physical properties, mechanical properties, lattice vibrations, crystal structure determination and ferroelectricity. The other crystalline states like nano-, poly-, liquid- and quasi crystals are discussed. Several new topics like nonlinear optics and the Rietveld method are presented in the book. The book lays emphasis on the role of symmetry in crystal properties. Comprehensiveness is the strength of the book; this allows users at different levels a choice of chapters according to their requirements.
This book explores the dynamics and vibration properties of gearboxes, with a focus on geared rotor systems. It discusses mechanical theories, finite-element based simulations, experimental measurements and vibration signal processing techniques. It introduces the vibration-resonance calculation method for the geared rotor system in wind turbines and load sharing of the planetary gear train, and offers a method for calculating the vibrations of geared rotor systems under either internal excitations from gear sets or external loads transferred from wind loads. It also defines and elaborates on parameter optimization for planetary gear systems based on the torsional dynamics of wind-turbine geared rotor systems. Moreover, it describes experimental measurements of vibrations on the wind-turbine gearbox performed on the test rig and on site, and analyzes the vibration signals of different testing points, showing them in both time and frequency domains. Lastly, it lists the gear coupling frequencies and fault characteristic frequencies from the vibrations of the gearbox housing. The technologies and results presented are valuable resources for use in dynamic design, vibration prediction and analysis of gearboxes and geared rotor systems in wind turbines as well as many other machines.
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
This book gathers contributions presented at the 9th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2016. It includes both theory-oriented and practice-oriented chapters. The former focus on heavy-tailed time series and processes, PAR models, rational spectra for PARMA processes, covariance invariant analysis, change point problems, and subsampling for time series, as well as the fraction-of-time approach, GARMA models and weak dependence. In turn, the latter report on case studies of various mechanical systems, and on stochastic and statistical methods, especially in the context of damage detection. The book provides students, researchers and professionals with a timely guide to cyclostationary systems, nonstationary processes and relevant engineering applications.
This book provides readers with an overview of recent theories and methods for machinery diagnostics applied to machinery maintenance. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work discussed at the International Congress on Technical Diagnostics, ICTD2016, held on September 12 - 16, 2016, in Gliwice, Poland. The book covers a broad range of topics, including machines operating in non-stationary conditions, and examples from different industrial fields of mechanical, civil, computer and electronic engineering as well as the medical, food, automotive, and mining industries. By presenting state-of-the-art diagnostic solutions and discussing important industrial issues the book offers a valuable resource to both academics and professionals as well as a bridge to facilitate communication and collaboration between the two groups.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
This volume gathers contributions from the final workshop of the RILEM TC-251-SRT "Sulfate Resistance Testing" on External Sulfate Attack (TESA 2018), held on May 24-25, 2018 at IETcc-CSIC, Madrid, Spain. One of the Technical Committee's main events, it addressed various aspects of external sulfate attack in concrete structures and test methods. The workshop promoted technical discussions and debates on ideas on these topics, with a focus on evaluating the resistance of concrete exposed to ESA. It also provided a forum for participants from around the globe to share their experiences and research on concrete structures affected by external sulfate attack and on test methods. The book discusses the latest advances in research related to ESA and new developments in test methods, and features real-world case studies of concrete structures affected by external sulfate attack in various countries. It also presents new studies linking field cases and lab tests, including 12 contributions on 3 main themes: mechanisms of alteration in external sulfate attack; field aspects of external sulfate attack; and testing to evaluate the resistance of concrete to external sulfate attack.
In this work, outstanding, recent developments in various disciplines, such as structural dynamics, multiphysic mechanics, computational mathematics, control theory, biomechanics, and computer science, are merged together in order to provide academicians and professionals with methods and tools for the virtual prototyping of complex mechanical systems. Each chapter of the work represents an important contribution to multibody dynamics, a discipline that plays a central role in the modelling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of applications.
Mechanics and Control of Soft-fingered Manipulation introduces a new approach to the modeling of fingertips that have a soft pad and a hard back plate, similar to human fingers. Starting from the observation of soft-fingered grasping and manipulation, the book provides a parallel distributed model that takes into account tangential deformation of the fingertips. The model is supported with many experimental verifications and simulation results. Statics and dynamics in soft-fingered grasping and manipulation are also formulated based on this new model. The book uniquely investigates how soft fingertips with hard back plates enhance dexterity in grasping and manipulation, theoretically and experimentally, revealing the differences between soft-fingered and rigid-fingered manipulation. Researchers involved in object manipulation by robotic hands, as well as in human dexterity in object manipulation, will find this text enlightening.
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.
Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characterization will find the book to be an outstanding introduction.
This book describes the solution of contact problems with an emphasis on idealized (mainly linear) elastic problems that can be treated with elementary analytical methods. General physical and mathematical features of these solutions are highlighted. Topics covered include the contact of rough surfaces and problems involving adhesive (e.g. van der Waals) forces. The author is a well-known researcher in the subject with hands-on experience of the topics covered and a reputation for lucid explanations. The target readership for the book includes researchers who encounter contact problems but whose primary focus is not contact mechanics. Coverage is also suitable for a graduate course in contact mechanics and end-of-chapter problems are included.
Generalized convexity conditions play a major role in many
modern mechanical applications. They serve as the basis for
existence proofs and allow for the design of advanced algorithms.
Moreover, understanding these convexity conditions helps in
deriving reliable mechanical models.
This volume collects the edited and reviewed contributions presented in the 5th iTi Conference in Bertinoro covering fundamental aspects in turbulent flows. In the spirit of the iTi initiative, the volume is produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. Turbulence presents a large number of aspects and problems, which are still unsolved and which challenge research communities in engineering and physical sciences both in basic and applied research. The book presents recent advances in theory related to new statistical approaches, effect of non-linearities and presence of symmetries. This edition presents new contributions related to the physics and control of laminar-turbulent transition in wall-bounded flows, which may have a significant impact on drag reduction applications. Turbulent boundary layers, at increasing Reynolds number, are the main subject of both computational and experimental long research programs aimed at improving our knowledge on scaling, energy distribution at different scales, structure eduction, roughness effects to name only a few. Like previous editions several numerical and experimental analysis of complex flows, mostly related to applications, are presented. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Theory, II Stability, III Wall bounded flows, IV, Complex flows, V Acoustic, VI Numerical methods. The volume is dedicated to the memory of Prof. Rudolf Friedrich who prematurely died in Munster/Germany on the 16th of August 2012. In his honor the conference has started with a special session dedicated to his work. "
This volume contains 39 contributions presented at the IUTAM Symposium on Mechanics of Granular and Porous Materials. The Symposium reviewed the current understanding of the constitutive behaviour of porous and granular solids, based on experimental data, numerical simulations and micromechanical models. An interdisciplinary approach is adopted, involving the fields of solid mechanics, materials science, geomechanics, chemical engineering and mathematics. This book emphasizes the development and use of constitutive laws to model practical processes such as mixing, drainage and drying, compaction of metal and ceramic powders and soils, and instabilities associated with these processes. A common theme is the development of constitutive models from an understanding of the underlying physical mechanisms of deformation and fracture. The volume should be of interest to researchers and to engineers concerned with measuring and predicting the response of granular and porous solids for structural applications.
This book comprises selected proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), focusing on emerging opportunities and challenges in the field of ocean engineering and offshore structures. It includes state-of-the-art content from leading international experts, making it a valuable resource for researchers and practicing engineers alike.
Written by the world 's leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It examines the most important contributions to the field made in the past decade, offering a critical and comprehensive portrait of the subject from various complementary perspectives.
This book provides an in-depth understanding of precise and approximate MMC modeling and calculation techniques of engineering systems. The in-depth analysis demonstrates that it is only possible to precisely model and calculate the dependability of systems including s-dependent components with the knowledge of their (total) universe spaces, represented here by Markov spaces. They provide the basis for developing and verifying approximate MMC models. With the mathematical steps described and applied to several examples throughout this text, interested system developers and users can perform dependability analyses themselves. All examples are structured in precisely the same way.
The ECCOMAS Thematic Conference "Multibody Dynamics 2009" was held in Warsaw, representing the fourth edition of a series which began in Lisbon (2003), and was then continued in Madrid (2005) and Milan (2007), held under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). The conference provided a forum for exchanging ideas and results of several topics related to computational methods and applications in multibody dynamics, through the participation of 219 scientists from 27 countries, mostly from Europe but also from America and Asia. This book contains the revised and extended versions of invited conference papers, reporting on the state-of-the-art in the advances of computational multibody models, from the theoretical developments to practical engineering applications. By providing a helpful overview of the most active areas and the recent efforts of many prominent research groups in the field of multibody dynamics, this book can be highly valuable for both experienced researches who want to keep updated with the latest developments in this field and researches approaching the field for the first time. |
You may like...
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,508
Discovery Miles 55 080
Modelling, Analysis, and Control of…
Ziyang Meng, Tao Yang, …
Hardcover
R2,975
Discovery Miles 29 750
Semi-inverse Method In Nonlinear…
Anatoly S Yudin, Dmitry V Shchitov
Hardcover
R2,249
Discovery Miles 22 490
Nonlinear Mechanics of Complex…
Holm Altenbach, Marco Amabili, …
Hardcover
R5,892
Discovery Miles 58 920
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R4,930
Discovery Miles 49 300
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
|