![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
Modern Vibrations Primer provides practicing mechanical engineers with guidance through the computer-based problem solving process. The book illustrates methods for reducing complex engineering problems to manageable, analytical models. It is the first vibrations guide written with a contemporary approach for integration with computers.
This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.
Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: opreliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue ofatigue crack nucleation, including microstructural and continuous models otheory of fatigue crack propagation ofatigue crack growth in linear elastic materials subject to dispersed damage ofatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation ofatigue and related phenomena in hereditary solids oapplication of the theory fatigue crack growth considering environmental factors ounidirectional fiber composites with ductile matrix and brittle, initially continuous fibers olaminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics ofcomposites, as well as modern branches of mechanics of solids and structures.
This publication elucidates the various problems associated with attaining stability, and provides the results for practical use by the design engineer. By presenting a simple and visual description of the physical phenomena, the authors show how to determine the critical loads of various structures, such as frames, arches, building structures, trusses and sandwiches. Special emphasis is given to the post-critical behaviour - essential for assessing the safety of structures - and furthermore to the summation theories that make the solution of complicated stability problems relatively simple. It is a guide for structural design engineers and researchers who need a good understanding of buckling phenomena. It should also be a useful text for undergraduate and MSc students on structural stability courses.
Many high-rise buildings have been constructed in recent decades,
particularly in Western Pacific Rim countries. Some examples of
these include the Grand Gateway at Xi Hui and the Tomorrow Square,
both in Shanghai, the Xiamen Post and Telecommunication Building in
China, the Petronas (twin) Towers in Malaysia and the Shanghai
World Financial Center. The last three are well over 1,000 feet in
height, with the Petronas Towers measuring 1,483 feet tall and the
Shanghai World Financial Center standing at 1,509 feet tall.
Metal Cutting Mechanics outlines the fundamentals of metal cutting
analysis, reducing the extent of empirical approaches to the
problems as well as bridging the gap between design and
manufacture. The author distinguishes his work from other works
through these aspects:
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject.
Tensor Calculus and Analytical Dynamics provides a concise,
comprehensive, and readable introduction to classical tensor
calculus - in both holonomic and nonholonomic coordinates - as well
as to its principal applications to the Lagrangean dynamics of
discrete systems under positional or velocity constraints. The
thrust of the book focuses on formal structure and basic
geometrical/physical ideas underlying most general equations of
motion of mechanical systems under linear velocity
constraints.
Fracture and Size Effect in Concrete and Other Quasibrittle
Materials is the first in-depth text on the application of fracture
mechanics to the analysis of failure in concrete structures. The
book synthesizes a vast number of recent research results in the
literature to provide a comprehensive treatment of the topic that
does not give merely the facts - it provides true understanding.
This monograph seeks to strengthen the contributions of Polish scientists and engineers to the study of problems of mechanical vibrations and noise. It presents research covering such topics as: structural damping; internal damping in composite materials; and noise attenuation in working machines.
This monograph seeks to strengthen the contributions of Polish scientists and engineers to the study of problems of mechanical vibrations and noise. It presents research covering such topics as: structural damping; internal damping in composite materials; and noise attenuation in working machines.
A Primer to Theoretical Soil Mechanics is about adapting continuum mechanics to granular materials. The field of continuum mechanics offers many fruitful concepts and methods, however there is declining interest in the field due to its complex and fragmented nature. This book's purpose is therefore to facilitate the understanding of the theoretical principles of soil mechanics, as well as introducing the new theory of barodesy. This title argues for barodesy as a simple alternative to the plasticity theory used currently and provides a systematic insight into this new constitutive model for granular materials. This book therefore introduces a complex field from a fresh and innovative perspective using simple concepts, succinct equations and explanatory sketches. Intended for advanced undergraduates, graduates and PhD students, this title is also apt for researchers seeking advanced training on fundamental topics.
The book explores the theoretical background of one of the most widespread activities in hydrocarbon wells, that of hydraulic fracturing. A comprehensive treatment of the basic phenomena includes: linear elasticity, stresses, fracture geometry and rheology. The diverse concepts of mechanics are integrated into a coherent description of hydraulic fracture propagation. The chapters in the book are cross-referenced throughout and the connections between the various phenomena are emphasized. The book offers readers a unique approach to the subject with the use of many numerical examples.
This monograph provides a general background to the modelling of a special class of offshore structures known as compliant structures. External forcing is resisted by buoyancy and tension forces which increase when the structure is slightly offset from its equilibrium. The technical development given in this book is presented in such a way as to highlight the adaptability of the modelling, and the reader is shown how the techniques described can be applied to a variety of different offshore structures.
Concrete durability in climates where freezing and thawing occurs is a continuing problem. It is particularly acute for highway and bridge structures, where de-icing salts are used to combat the effects of frost, snow and ice. These salts can cause damage to concrete and accelerate corrosion of reinforcements. This book presents the latest international research on this area, with contributions from North America and Europe which were presented at an international RILEM workshop.
Despite tremendous advances made in fracture mechanics of concrete in recent years, very little information has been available on the nature of fracture processes and on reliable test methods for determining parameters for the different models. Moreover, most texts on this topic discuss numerical modeling but fail to consider experimentation. This book fills these gaps and synthesizes progress in the field in a simple, straightforward manner geared to practical applications.
Modern analytical theories of fatigue coupled with a knowledge of processing effects on metals make up the sound basis for designing machine parts that are free from unexpected failure. Fatigue Design: Life Expectancy of Machine Parts provides the information and the tools needed for optimal design. It highlights practical approaches for effectively solving fatigue problems, including minimizing the risk of hidden perils that may arise during production processes or from exposure to the environment. The material is presented with a dual approach: the excellent coverage of the theoretical aspects is accented by practical illustrations of the behavior of machine parts. The theoretical approach combines the fundamentals of solid mechanics, fatigue analysis, and crack propagation. The chapters covering fatigue theories are given special emphasis, starting with the basics and progressing to complicated multiaxial nonlinear problems. The practical approach concentrates on the effects of surface processing on fatigue life and it illustrates many faceted fatigue problems taken from case studies. The solutions demonstrate the authors' detailed analyses of failure and are intended to be used as preventive guidelines. The cases are a unique feature of the book. The numerical method used is the finite element method, and is presented with clear explanations and illustrations. Fatigue Design: Life Expectancy of Machine Parts is an extremely valuable tool for both practicing design engineers and engineering students.
This work details general theories and reliable analysis techniques for solving real-world problems in linear and non-linear mechanics. This book looks at the structural and mechanical behaviour of components such as beams, frames and plates of both uniform and variable stiffness in terms of both stress and deformation. It also emphasizes the challenging demands of industry. College or university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
This fourth edition of this volume features a new chapter on computational methods that presents the basic principles on which most modern computer programs are developed. It introduces an example on rotor balancing and expands on the section on shock spectrum and isolation. It adds coverage of the methods of assumed modes and incorporates a new section on suspension bridges to illustrate the application of the continous system theory to simplified models for the calculation of natural frequencies.
The study of fracture mechanics of materials provides crucial information relating to the performance, integrity, durability and failure mode of individual components of a structure, and ultimately of an entire structure. Given the widespread and increasing use of cement and concrete materials in modern construction, it is essential that civil and structural engineers fully understand the mechanical properties of the materials they are specifying, and have a clear insight into their advantages and limitations. This book provides a comprehensive and readable exposition of this complex subject. This book should be of interest to structural, civil and mechanical engineers involved in design of new structures and testing and assessment of existing structures, as well as those concerned with researching materials properties, performance and design-life.
Nonlinear Waves in Elastic Media explores the theoretical results
of one-dimensional nonlinear waves, including shock waves, in
elastic media. It is the first book to provide an in-depth and
comprehensive presentation of the nonlinear wave theory while
taking anisotropy effects into account. The theory is completely
worked out and draws on 15 years of research by the authors, one of
whom also wrote the 1965 classic Magnetohydrodynamics.
An in-depth treatment of the transient stability problem, its physical description and formulation. Discusses methods for transient stability analysis, sensitivity assessment and control. Considers conventional and non-conventional techniques including direct and artificial intelligence, system theory, load modeling, evaluation of machine parameters, saturation effects and pattern recognition approaches. Features practical examples and simulation results.
Unique in its approach, this introduction to the physics of creep concentrates on the physical principles underlying observed phenomena. As such it provides a resource for graduate students in materials science, metallurgy, mechanical engineering, physics and chemistry as well as researchers in other fields. Following a brief mathematical treatment, the authors introduce creep phenomena together with some empirical laws and observations. The mechanisms of creep and diffusion under varying experimental conditions are subsequently analysed and developed. The second half of the text considers alloying in greater detail as well as exploring the structure and properties of superalloys and stress effects in these materials.
Providing a wealth of information on fundamental topics in the areas of linear air and underwater acoustics, as well as space-time signal processing, this book provides real-world design and analysis equations. As a consequence of the interdisciplinary nature of air and underwater acoustics, the book is divided into two parts: Acoustic Field Theory and Space-Time Signal Processing. It covers the fundamentals of acoustic wave propagation as well as the fundamentals of aperture theory, array theory, and signal processing. Starting with principles and using a consistent, mainly standard notation, this book develops, in detail, basic results that are useful in a variety of air and underwater acoustic applications. Numerous figures, examples, and problems are included.
Restraint and intrinsic stresses in concrete at early ages are
vitally important for concrete structures which must remain free of
water-permeable cracks, such as water-retaining structures, tunnel
linings, locks and dams. The development of hydration heat,
stiffness and strength, also the degree of restraint and,
especially for high-strength concrete, non-thermal effects, are
decisive for sensitivity to cracking. Determining thses stresses in
the laboratory and in construction components has led to a clearer
understanding of how they develop and how to optimize mix design,
temperature and curing conditions. New testing equipment has
enabled the effects of all the important parameters to be qualified
and more reliable models for predictiong restraint stresses to be
developed. |
![]() ![]() You may like...
Aliens: The Original Years Vol. 1
Mark A Nelson, Anina Bennett
Paperback
Legends - People Who Changed South…
Matthew Blackman, Nick Dall
Paperback
|