![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This volume contains the results of the Manchester Benchmarking exercise for railway vehicle dynamics simulation packages. Five of the main computer packages currently used for this purpose were examined in the exercise and the results are presented in the form of tables and graphs.
Assuming only basic knowledge of mathematics and engineering mechanics, this lucid reference introduces the fundamentals of finite element theory using easy-to-understand terms and simple problems-systematically grounding the practitioner in the basic principles then suggesting applications to more general cases. Furnishes a wealth of practical insights drawn from the extensive experience of a specialist in the field Providing an in-depth overview of the analysis process, Practical Guide to Finite Elements describes the casting of elementary mechanics problems into a simplified form with idealization techniques shows how energy methods are employed to solve engineering problems involving stress, strain, and displacement outlines a process for computer-aided engineering analysis explains how numerical integration is utilized in conjunction with parametric elements demonstrates how a simple FORTRAN software routine computes element stiffness considers the use of loads and boundary conditions in finite element models presents common pitfalls that beginning analysts are likely to encounter addresses the interpretation of finite element analysis results and more Generously illustrated with over 200 detailed drawings to clarify discussions and containing key literature citations for more in-depth study of particular topics, this clearly written resource is an exceptional guide for mechanical, civil, aeronautic, automotive, electrical and electronics, and design engineers; engineering managers; and upper-level undergraduate, graduate, and continuing-education students in these disciplines.
This dictionary represents today the most extensive rock blasting dictionary available and it is therefore a valuable tool and essential for research and writing reports, papers to international journals. Terminology is important in the process of development of a science because it is the language for communication between students, teachers, technicians, scientists and practitioners in the field of blasting. This dictionary contains 1,980 terms, 316 symbols, ninety-three acronyms, abbreviations and shortened forms, 221 references, thirty-one figures, thity-two formulas and twenty-eight tables. In this book, not only short definitions of the terms are presented, but also a quantification of some terms is included, and their relationship to other parameters in blasting is highlighted. All students, teachers, technicians, engineers, scientists and
practioners in the field of blasting should get a copy as a desk
reference book. If we all use the same symbols for example, the
reading of blasting papers is speeded up and facilitated a
lot.
Maintaining an optimal blend of theory and practice, this readily accessible reference/text details the utility of system dynamics for analysis and design of mechanical, electrical, fluid, thermal, and "mixed" engineering systems-addressing topics from system elements and simple first- and second-order systems to complex lumped- and distributed-parameter models of practical machines and processes. Emphasizing digital simulation and integrating frequency-response methods throughout, System Dynamics furnishes up-to-date and thorough discussions on relations between real system components and ideal math models continuous-time dynamic system simulation methods, such as MATLAB/SIMULINK analytical techniques, such as classical D-operator and Laplace transform methods for differential equation solutions and linearization methods vibration, electromechanics, and mechatronics Fourier spectrum treatment of periodic functions, and transients and much more System Dynamics also contains a host of self-study and pedagogical features that will make it a useful companion for years to come, such as easy-to-understand simulation diagrams and results applications to real-life systems--including actual industrial hardware intentional use of nonlinearity to achieve optimal designs numerous end-of-chapter problems and worked examples over 1425 graphs, equations, and drawings throughout the text the latest references to key sources in the literature Serving as a foundation for engineering experience, System Dynamics is a valuable reference for mechanical, system, control/instrumentation, and sensor/actuator engineers as well as an indispensable textbook for undergraduate students taking courses such as Dynamic Systems in departments of mechanical, aerospace, electrical, agricultural, and industrial engineering and engineering physics.
Multinary compounds are now used in a wide range of devices, including photovoltaic solar cells, light emitters and detectors, and piezoelectric actuators. Ternary and Multinary Compounds provides an interdisciplinary forum for scientists and engineers working on fundamental and applied aspects of these materials. The volume focuses on optoelectronic properties, electronic band structure, charge carrier transport, optical and magnetic properties, and superconductivity. It includes chapters on the research and development of new techniques and novel materials, such as laser ablation deposition and ferroelectrics.
The 30th International Geological Congress was held in Beijing, China in August 1997. Leading scientists convened to present their findings and views to the international geological research community. Volume 14 of 26 focuses on structural geology and geomechanics. All articles in the proceedings have been refereed and keynote papers have been included in Volume 1. These proceedings aim to present a view of contemporary geology and should be of interest to researchers in the geological sciences.
This proceedings contains contributions to the series of seminars held in Vienna (1992), Miskolc, Hungary (1993 and 1994) and Vienna (1995) and provides a valuable resource for those concerned with the teaching of fracture and fatigue. It presents a wide range of approaches relevant to course and curriculum development. It is aimed particularly at those concerned with graduate and post-graduate education. This book should be of interest to lecturers and researchers in the field of mechanics of materials, especially related to mechanical and structural engineering.
The use of positive muons to simulate protons in solids is a relatively new, but already successful field of research, which exploits the unique properties of the muon. This book is a collection of papers for special issues of the Philosophical Magazine Part B and the Philosophical Magazine Transactions A, together with previously unreleased material presented at a seminar on the subject. The 30 papers here are written by an international team of experts who effectively cover both the theoretical and experimental aspects of the subject.
Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.
A state-of-the-art report prepared by RILEM Technical Committee 116-PCD. At present, durability of concrete is controlled by specifying the materials to be used, the methods of mixing, placing, curing and so on. This approach is often unsatisfactory and it is a common objective of concrete researchers and engineers to develop performance criteria which allow the potential durability of a particular concrete mix or structure to be estimated. However, the complexity of concrete as a material and the difficulty of developing consistent and reliable test methods has meant that progress has been slow. International interest in the subject is growing strongly with the development of international standards and so this book is very timely in giving an authoritative, international review of the subject. It will set the scene for the next few years as a key source of information and advice.
The fundamental theories of simulating blast effects in elastic and elastoplastic media are presented in this monograph. Both classical and modern methods for modelling the processes of rock breakage by blasting are described. Contemporary methods for recording the processes occurring at high speeds are also presented. Physical and mathematical models of the major phenomena associated with blasting in open-cast and underground mines are illustrated. This monograph is intended for professionals involved in research and in the utilisation of blast energy in various sectors of the national economy.
Derived from the invited IUTAM Symposium in September 1993, this volume's contributions discuss recent advances in fracture mechanics, studies of concrete, rock, ceramics and other brittle disordered materials at micro and structural levels. It draws together research and new applications in continuum, damage and fracture mechanics approaches.
Designed for engineers, this work considers flow-induced vibrations. It covers topics such as body oscillators; fluid loading and response of body oscillators; fluid oscillators; vibrations due to extraneously-induced excitation; and vibrations due to instability-induced excitation.
This is the first book devoted to a systematic description of the
linear theory of piezoelectric shells and plates theory. The book
contains two parts. In the first part, the theories for
electroelastic thin-walled elements of arbitrary form with
different directions of preliminary polarization are presented in
an easy form for practical use. The approximate methods for
integrating the equations of piezoelectric shells and plates are
developed and applied for solving some engineering problems. In the
second part, the theory of piezoelectric shells and plates is
substantiated by the asymptotic method. The area of applicability
for different kinds of electroelastic shell theories is studied. A
new problem concerning the electroelastic phenomena at the edge of
a thin-walled element is raised and solved.
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
This volume details the principles underlying rapid solidification processing, material structure and properties, and their applications. This practical resource presents a manifold approach to both amorphous and crystalline rapidly solidified metallic alloys.;Written by over 30 internationally acclaimed specialists in their respective fields, Rapidly Solidified Alloys: surveys nucleation and growth studies in undercooled melts; examines various processes for the production of rapidly solidified alloys; discusses the compaction of amorphous alloys; describes surface remelting treatments for the rapid solidification of surface layers and the resultant improved workpiece properties; covers the closely related topics of structural relaxation, atomic transport and other thermally induced processes; demonstrates microstructure-property relationships in rapidly quenched crystalline alloy systems and their beneficial effects in applications; and elucidates the basic, engineeering, and applications-oriented magnetic properties of amorphous alloys.;Furnishing more than 2300 literature citations for further study of specific subjects, Rapidly Solidified Alloys is intended for materials, mechanical, product, and civil engineers; metallurgists; magneticians; physicists; physical chemists; and graduate students in these disciplines.
This text presents the most recent research on fracture and damage of concrete and rock. It provides an improved understanding of the basic physical and mechanical principles of fracture mechanics in these materials with a strong view towards applications in construction engineering and mining engineering. It forms the proceedings of the international conference held in Vienna in November 1992. The background to the book comes from three main areas: fatigue and ageing of complex concrete structures have been responsible both for loss of life and for expenditure running into billions of dollars in recent decades; lack of virgin building land and high property values in cities and urban areas have led to more demolition and recycling of concrete structures, and related environmental problems; and more engineering structures are being built on and in rock mass of low quality and difficult terrain. Rock fracture mechanics has matured to a fully recognized discipline and is now being applied to problems of excavation, tunnelling, blasting and anchoring. FDCR Conferences provide a forum for international, interdisciplinary co-operation and exchange of ideas and experience between scienti
This is the second of three volumes containing the proceedings of the International Colloquium 'Free Boundary Problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main theme of this volume is the concept of free boundary problems associated with solids. The first free boundary problem, the freezing of water - the Stefan problem - is the prototype of solidification problems which form the main part of this volume. The two sections treting this subject cover a large variety of topics and procedures, ranging from a theoretical mathematical treatment of solvability to numerical procedures for practical problems. Some new and interesting problems in solid mechanics are discussed in the first section while in the last section the important new subject of solid-solid-phase transition is examined.
New developments in the response spectrum method have led to calculations in seismic stresses that are more accurate, and usually lower, than those obtained by conventional methods. This new textbook examines the wealth of information on the response spectrum method generated by the latest research and presents the background theory in simplified form.
This volume emphazises the most early 1990s advances in fracture mechanics as specifically applied to steel bar reinforced concrete. Fracture mechanics has been applied to plain and fibre reinforced concrete with increasing success over recent years. This workshop extended these concepts to steel bar reinforced and pre-stressed concrete design. Particularly for high strength concrete, which is a very brittle material, and in the case of large structural members, the application of fracture mechanics appears to be very useful for improving the present design rules. The participants at the Turin workshop contributed expert opinions in four selected areas for which a rational approach, using fracture mechanics, could introduce variations into the concrete design codes: size effects; anchorage and bond; minimum reinforcement for elements in flexure; and shear resistance. The 23 chapters logically address these themes and demonstrate the unique ability of fracture mechanics to capture all the experimentally observed characteristics.
This work reviews methods for the experimental determination of concrete toughness and presents theories and models suitable for describing cracking and fracturing phenomena in plain and reinforced concrete. Test methods based on classsical linear fracture mechanics cannot be applied to laboratory sized concrete specimens. The book compares the currently used methods and presents recommended test procedures for mode I fracture/toughness using notched beam and other specimens. Crack propagation under mixed-mode loading (Mode II) is discussed and current test methods are extensively reviewed. Effects of loading rate, temperature and humidity effects are treated in a separate chapter. The book concludes with descriptions and recommendations of techniques for detecting the fracture process zone in concrete, in particular, pulse velocity and laser interferometry techniques. The introduction of the concepts of fracture toughness and fracture energy into structural concrete design codes means that the experimental determination of fracture porperties is ceasing to be an academic exercise and is becoming a technical need. This book has been prepared by RILEM Technical committee 89-FMT and
This book demonstrates how to formulate the equations of mechanical systems. Providing methods of analysis of complex mechanical systems, the book has a clear focus on efficiency, equipping the reader with knowledge of algorithms that provide accurate results in reduced simulation time. The book uses Kane's method due to its efficiency, and the simple resulting equations it produces in comparison to other methods and extends it with algorithms such as order-n. Kane's method compensates for the errors of premature linearization, which are often inherent within vibrations modes found in a great deal of public domain software. Describing how to build mathematical models of multibody systems with elastic components, the book applies this to systems such as construction cranes, trailers, helicopters, spacecraft, tethered satellites, and underwater vehicles. It also looks at topics such as vibration, rocket dynamics, simulation of beams, deflection, and matrix formulation. Flexible Multibody Dynamics will be of interest to students in mechanical engineering, aerospace engineering, applied mechanics and dynamics. It will also be of interest to industry professionals in aerospace engineering, mechanical engineering and construction engineering.
This volume sets out to present recent research findings on the applications of fracture mechanics to concrete structures. Papers from international contributors describe existing and new modelling techniques in the analysis of concrete materials and structures. Topics discussed include structural modelling, bending, shear, bond and anchorage. The book forms the proceedings of a RILEM workshop held in Sweden in 1989. It is dedicated to Professor Arne Hillerborg, whose contribution to fracture mechanics is also reviewed. |
![]() ![]() You may like...
|