![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
The book presents the work of the RILEM Technical Committee 261-CCF, which organized the challenging International Round Robin Test (RRT) on the creep behaviour of Fibre Reinforce Concrete (FRC) cracked specimens. Although different creep test methodologies have been developed in recent years, the absence of a standardised creep methodology hindered general comparisons. Therefore, the RILEM TC 261-CCF launched an ambitious international RRT program to improve the knowledge on long-term behaviour of cracked sections of FRC and assess all the different testing methodologies, assuming the big variability of testing criteria among the scientific community. The participation of 19 laboratories across 20 institutions in 14 countries all over the world enabled the realisation of the largest experimental campaign on creep in the cracked state. As a result of the RRT, an extensive database of creep test results was created containing comprehensive information from 124 cracked FRC specimens tested using different creep testing procedures in agreed conditions. The book will benefit academics and practitioners interested in the long-term behaviour of FRC since it served as basis for the recently published RILEM Recommendation on creep testing procedure and represents the current knowledge on creep in cracked FRC specimens.
This book presents selected papers presented at the 8th International Conference "Design, Modeling and Experiments of Advanced Structures and Systems" (DeMEASS VIII, held in Moscow, Russia in May 2017) and reflects the modern state of sciences in this field. The contributions contain topics like Piezoelectric, Ferroelectric, Ferroelastic and Magnetostrictive Materials, Shape Memory Alloys and Active Polymers, Functionally Graded Materials, Multi-Functional Smart Materials and Structures, Coupled Multi-Field Problems, Design and Modeling of Sensors and Actuators, Adaptive Structures.
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.
This book summarizes the main methods of experimental stress analysis and examines their application to various states of stress of major technical interest, highlighting aspects not always covered in the classic literature. It is explained how experimental stress analysis assists in the verification and completion of analytical and numerical models, the development of phenomenological theories, the measurement and control of system parameters under operating conditions, and identification of causes of failure or malfunction. Cases addressed include measurement of the state of stress in models, measurement of actual loads on structures, verification of stress states in circumstances of complex numerical modeling, assessment of stress-related material damage, and reliability analysis of artifacts (e.g. prostheses) that interact with biological systems. The book will serve graduate students and professionals as a valuable tool for finding solutions when analytical solutions do not exist.
These are the Proceedings of the 6th International Symposium on Multibody Systems and Mechatronics (MUSME 2017) which was held in Florianopolis, Brazil, October 24-28, 2017. Topics addressed include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME 2017 Symposium was one of the activities of the FEIbIM Commission for Mechatronics and IFToMM technical Committees for Multibody Dynamics, Robotics and Mechatronics.
This book highlights time reversal acoustics, techniques based on the symmetry properties of acoustic fields. It has the unique feature that the first eleven chapters of the book are on the indepth studies of the theories of time reversal acoustics. The remaining chapters are on the four major applications of time reversal acoustics, together with their experimental setups and case studies: underwater communication, seismic exploration,nondestructive evaluation, and medical ultrasound imaging.. The gauge invariance approach to acoustic fields, proposed by the author in 2007, is confirmed by the successful fabrication of acoustical metamaterials and the applications of time reversal acoustics to superresolution. The book also presents groundbreaking applications of time reversal acoustics to underwater communication technology and the application of metamaterials to time reversal acoustics.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
This book highlights the symmetry properties of acoustic fields and describes the gauge invariance approach, which can be used to reveal those properties. Symmetry is the key theoretical framework of metamaterials, as has been demonstrated by the successful fabrication of acoustical metamaterials. The book first provides the necessary theoretical background, which includes the covariant derivative, the vector potential, and invariance in coordinate transformation. This is followed by descriptions of global gauge invariance (isotropy), and of local gauge invariance (anisotropy). Sections on time reversal symmetry, reflection invariance, and invariance of finite amplitude waves round out the coverage.
This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1-4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors' original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.
This book presents research results of PowerWeb, TU Delft's consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University's knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.
This book presents comprehensive experimental, numerical, and theoretical research on projectile impact analysis, such as the rigid projectile penetration/perforation of concrete and metallic targets, and shaped-charge-formed projectile and jet penetrations. Concrete and metal materials are widely used in protective structures in both civil engineering and armored vehicles, such as military fortifications, underground shelters, infantry fighting vehicles, and tanks, which are designed to withstand intentional or accidental impact loadings caused by projectiles and fragments, and the responses of these targets under projectile impact have been a topic of discussion for several decades. Written for researchers and engineers working in the fields of protective structures and high-speed penetration mechanics, the book is also a valuable reference for senior undergraduate and postgraduate students majoring in defense engineering, terminal ballistics and other related fields.
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: * One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures * Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification * The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
This book presents the proceedings of one of the major conferences in fatigue, fracture and structural integrity (NT2F). The papers are organized and divided in five different themes: fatigue and fracture mechanics of structures and advanced materials; fatigue and fracture in pressure vessels and pipelines: mechanical behavior and structural integrity of welded, bonded and bolted joints; residual stress and environmental effects on the fatigue behavior; and simulation methods, analytical and computation models in fatigue and fracture.
This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H approach in the nonsmooth setting. Similar to the standard nonlinear H approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton-Jacobi-Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to g raduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.
This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
This book summarizes the author's lifetime achievements, offering new perspectives and approaches in the field of metal cutting theory and its applications. The topics discussed include Non-Euclidian Geometry of Cutting Tools, Non-free Cutting Mechanics and Non-Linear Machine Tool Dynamics, applying non-linear science/complexity to machining, and all the achievements and their practical significance have been theoretically proved and experimentally verified.
This edited monograph contains research contributions on a wide range of topics such as stochastic control systems, adaptive control, sliding mode control and parameter identification methods. The book also covers applications of robust and adaptice control to chemical and biotechnological systems. This collection of papers commemorates the 70th birthday of Dr. Alexander S. Poznyak.
The book celebrates the 65th birthday of Prof. Alexander K. Belyaev-a well-known expert in the field of Dynamics of Mechanical Systems. In addition to reflecting Prof. Belyaev's contributions, the papers gathered here address a range of current problems in Dynamics and Continuum Mechanics. All contributions were prepared by his friends and colleagues, and chiefly focus on theory and applications.
This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.
This book offers professionals working at power plants guidelines and best practices for vibration problems, in order to help them identify the respective problem, grasp it, and successfully solve it. The book provides very little theoretical information (which is readily available in the existing literature) and doesn't assume that readers have an extensive mathematical background; rather, it presents a range of well-documented, real-world case studies and examples drawn from the authors' 50 years of experience at jobsites. Vibration problems don't crop up very often, thanks to good maintenance and support, but if and when they do, most power plants have very little experience in assessing and solving them. Accordingly, the case studies discussed here will equip power plant engineers to quickly evaluate the vibration problem at hand (by deciding whether the machine is at risk or can continue operating) and find a practical solution.
This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz's focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.
The trends and progress attained in computational kinematics over a broad class of problems are grouped into six parts describing the main themes: kinematics algorithms, discussing kinematics problems in light of their solution algorithms; kinematics of mechanisms, studying problems related to specific mechanisms; singularities; workspace, discussing the determination of the workspace of given mechanisms; parallel manipulators; and motion and grasp planning, touching on computational geometry. The volume contains a representative sample of the most modern techniques available for kinetics problems, including techniques based on advances in algebraic geometry. Researchers, graduate students and practising engineers in work relating to kinematics, robotics, machine design and computer science should find this work useful. |
![]() ![]() You may like...
Theory of Concentrated Vortices - An…
S.V. Alekseenko, P.A. Kuibin, …
Hardcover
R5,669
Discovery Miles 56 690
Complexity and Complex Thermo-Economic…
Stanislaw Sieniutycz
Paperback
R5,284
Discovery Miles 52 840
Resistance to Anti-CD20 Antibodies and…
William Chi Shing Cho
Hardcover
R3,847
Discovery Miles 38 470
Business Strategy and Applications in…
Wim Van Grembergen, Steven Dehaes
Hardcover
R5,086
Discovery Miles 50 860
Transportation Policy and Economic…
John Bitzan, James Bitzan
Paperback
|