![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This book is the authors' crowning achievement. In particular, it comprises the problems contained in the three books, together with detailed solutions and explanations. Thus, Part I (Chapters 1--12) is related to the book "The Mathematical Theory of Elasticity," Part II (Chapters 13--21) covers the problems in the book "Thermal Stresses," and Part III (Chapters 22--26) covers problems in the book "Thermal Stresses - Advanced Theory and Applications." The three parts are augmented by Part IV (Chapters 27--29), Numerical Methods, that covers three important topics: Method of Characteristics, Finite Element Method for Coupled Thermoelasticity, and Boundary Element Method for Coupled Thermoelasticity. As Part IV is independent of the earlier parts, it may be studied separately. The book is an indispensable companion to all who study any of the three books listed above, and should also be of importance to those interested in the topics covered in Part IV. It contains not only the problems and their careful and often extensive solutions, but also explanations in the form of introductions that appear at the beginning of chapters in Parts I, II and III. Therefore, this book links the three listed books into one comprehensive entity consisting of four publications.
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
The volume is devoted to the dynamics of rods, which is a branch of mech- ics of deformable bodies. The main goal of the book is to present systema- cally theoretical fundamentals of the mechanics of rods as well as numerical methods used for practical purposes. Linear and nonlinear equations governing a rod's oscillations are p- sented. Methods of determining eigenvalues and eigenfunctions in conser- tive and non-conservative problems along with numerical methods dealing with forced, parametric, and random oscillations of rods are given. Some - sues of interaction of rods with air (liquid) flows and the dynamics of spa- curved rods containing flows of liquid are considered. The book consists of nine chapters and appendices and may be conv- tionally divided into two parts. That is, Chapters 1 to 6 contain, in the main, theoretical material, whereas Chapters 7 to 9 illustrate the application of the theoretical results to problems of practical interest. Problems for self-study are found in Chapters 3, 5, and 7. The solutions to most of the problems are given in Appendix B. The monograph is addressed to undergraduate and postgraduate students and teaching staff of technical universities. It may also be useful for scientists and mechanical engineers working in a wide range of industries. I wish to express my deep appreciation to my colleagues, Dr. S.A. Voronov and C.B. Danilenko, for their help in preparing the manuscript.
This book presents novel algorithms for designing Discrete-Time Sliding Mode Controllers (DSMCs) for Networked Control Systems (NCSs) with both types of fractional delays namely deterministic delay and random delay along with different packet loss conditions such as single packet loss and multiple packet loss that occur within the sampling period. Firstly, the switching type and non-switching type algorithms developed for the deterministic type fractional delay where the delay is compensated using Thiran's approximation technique. A modified discrete-time sliding surface is proposed to derive the discrete-time sliding mode control algorithms. The algorithm is further extended for the random fractional delay with single packet loss and multiple packet loss situations. The random fractional delay is modelled using Poisson's distribution function and packet loss is modelled by means of Bernoulli's function. The condition for closed loop stability in all above situations are derived using the Lyapunov function. Lastly, the efficacy of the proposed DSMC algorithms are demonstrated by extensive simulations and also experimentally validated on a servo system.
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi-Pasta-Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers an introduction to the challenges posed by nonlinearities in the development of these topics
Despite the apparent activity in the field, the ever increasing rate of development of new engineering materials required to meet advanced technological needs poses fresh challenges in the field of constitutive modelling. The complex behaviour of such materials demands a closer interaction between numerical analysts and material scientists in order to produce thermodynamically consistent models which provide a response in keeping with fundamental micromechanical principles and experimental observations. This necessity for collaboration is further highlighted by the continuing remarkable developments in computer hardware which makes the numerical simulation of complex deformation responses increasingly possible. This book contains 14 invited contributions written by distinguished authors who participated in the VIII International Conference on Computational Plasticity held at CIMNE/UPC (www.cimne.com) from 5-8 September 2005, Barcelona, Spain. The meeting was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS, www.eccomas.org). The different chapters of this book present recent progress and future research directions in the field of computational plasticity. A common line of many contributions is that a stronger interaction between the phenomenological and micromechanical modelling of plasticity behaviour is apparent and the use of inverse identification techniques is also more prominent. The development of adaptive strategies for plasticity problems continues to be a challenging goal, while it is interesting to note the permanence of element modelling as a research issue. Industrial forming processes, geomechanics, steel and concrete structures form the core of the applications of the different numerical methods presented in the book.
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
This volume is dedicated to Jacob Aboudi, a ?ne scientist who has made seminal c- tributions in applied mechanics. The papers presented here re?ect the appreciation of many of Jacob's colleagues. A publication list f- lowing this introduction provides an indi- tion of his distinguished academic career, c- rently in its ?fth decade, and the breadth of hisknowledge. His papersconsistentlydem- strate originality, innovation and diligence. This list uncovers the methodical work of a dedicated researcher whose achievements established him as a leading authority in the area of mathematical modeling of the beh- ior of heterogeneous materials, the area which became known as homogenization theory. Starting in 1981, Jacob established a micromechanical model known as the Method of Cells (MOC) which evolved into the Generalized Method of Cells (GMC) that predicts the macroscopic response of composite materials as a function of the pr- erties, volume fractions, shapes, and constitutive behavior of its constituents. The versatility of the model has been demonstrated to effectively incorporate various types of constituent material behavior (i. e. , both coupled and uncoupled mecha- cal, thermal, electrical and magnetic effects). As a result of its potential in providing an ef?cient tool for the emerging ?eld of multiscale analysis, the method gained increasing attention and became a subject for further research.
The articles in this book present advanced soft methods related to genetic and evolutionary algorithms, immune systems, formulation of deterministic neural networks and Bayesian NN. Many attention is paid to hybrid systems for inverse analysis fusing soft methods and the finite element method. Numerical efficiency of these soft methods is illustrated on the analysis and design of complex engineering structures.
This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.
This book is devoted to two primary objectives. The first is to present the errors, inadaptability and mistakes arising when the current theory on concrete is applied to explaining practical construction of concrete; the second is to put forward viewpoints in modern concrete science. Taking a number of engineering cases as examples, we experimentally studied and theoretically analyzed the errors, inadaptability, and mistakes when the current theory on concrete is applied to explaining practical construction of concrete. Moreover, we investigated the use of mixing ratios, aggregates, cement, high-performance concrete and fibers, as well as the frost resistance, cracking behavior, durability, dry shrinkage and autogenous healing to address and remedy the shortcomings in today's concrete science, put forward new proposals and make a number of innovative achievements in the field, particularly in modern theory on concrete science. The results and topics which will be of particular interest to engineers and researchers include: corrections to several one-sided, even mistaken views on concrete construction in the field and a new theory that can be adopted to improve the durability of concrete projects, to control and improve the implementation quality of concrete projects and to guide teaching in universities. Wenke Yang is a distinguished senior engineer at China Airport Construction Group Corporation, General Administration of Civil Aviation of China (CAAC).
This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the "Shock Wave Science and Technology Reference Library" presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.
The First African InterQuadrennial ICF Conference "AIQ-ICF2008" on Damage and Fracture Mechanics - Failure Analysis of Engineering Materials and Structures," Algiers, Algeria, June 1-5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.
This book gathers contributions presented at the 10th Workshop on Cyclostationary Systems and Their Applications, held in Grodek nad Dunajcem, Poland in February 2017. It includes twelve interesting papers covering current topics related to both cyclostationary and general non stationary processes. Moreover, this book, which covers both theoretical and practical issues, offers a practice-oriented guide to the analysis of data sets with non-stationary behavior and a bridge between basic and applied research on nonstationary processes. It provides students, researchers and professionals with a timely guide on cyclostationary systems, nonstationary processes and relevant engineering applications.
Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.
A systematic treatment of the thermal and elastic deformation of bearings, seals, and other machine elements under a wide variety of conditions, with particular emphasis on failure mechanisms when high speeds or loads cause significant frictional heating and on methods for predicting and avoiding such failures. Intended for designers and mechanical engineers responsible for high-performance machinery, the book is unique in discussing instabilities driven by frictional heating and thermal expansion and in developing a theoretical approach to engineering design in those cases in which the thermal problems are pivotal. It thus provides a guide as to what is important in the development of high-performance engineering systems. References to recent publications, new material that fill gaps in the literature, a consistent nomenclature, and a large number of worked examples make this a useful text and reference for both researchers and practising engineers.
Masonry constructions are the great majority of the buildings in Europe's historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the domes of Santa Maria del Fiore in Florence and St Peter's in Rome, as well as the Leaning Tower of Pisa. The last chapter - the 11th - regarding the behaviour of masonry buildings under seismic actions, has been modified and integrated in order to take into account the numerous recent achievements of the research in the dynamic and seismic analysis. The focal point is that there's no dissipation of energy during the deformation of masonry structures, even if accompanied by cracks. If properly reinforced, masonry constructions have the sole resource to escape the seismic action developing the rocking without failure, under alternate seismic action. In this context, the rocking of pier walls, the main resistant components of the masonry structure, has been here thoroughly examined. Furthermore, the out of plane and the in-plane seismic strengths of masonry walls with openings has been investigated within the framework of Limit Analysis. Through an interdisciplinary approach, involving Mathematics, Engineering and Architecture, this book highlights the tight connection existing between the Statics of Masonry constructions and the principles that ruled the history of constructions, since the beginnings as far as the Seventeenth century.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.
This book is devoted to applications of complex nonlinear dynamic phenomena to real systems and device applications. In recent decades there has been significant progress in the theory of nonlinear phenomena, but there are comparatively few devices that actually take this rich behavior into account. The text applies and exploits this knowledge to propose devices which operate more efficiently and cheaply, while affording the promise of much better performance.
This second edition is an enlarged, completely updated, and extensively revised version of the authoritative first edition. It is devoted to the detailed study of illuminating specific problems of nonlinear elasticity, directed toward the scientist, engineer, and mathematician who wish to see careful treatments of precisely formulated problems. Special emphasis is placed on role of nonlinear material response. The mathematical tools from nonlinear analysis are given self-contained presentations where they are needed. This book begins with chapters on (geometrically exact theories of) strings, rods, and shells, and on the applications of bifurcation theory and the calculus of variations to problems for these bodies. The book continues with chapters on tensors, three-dimensional continuum mechanics, three-dimensional elasticity, large-strain plasticity, general theories of rods and shells, and dynamical problems. Each chapter contains a wealth of interesting, challenging, and tractable exercises.
Computational Mechanics in solids, structures and coupled problems in engineering is today a mature science with applications to major industrial designs. This book reflects the state of art and it is written by some of the world leading authorities in this field, addressing such topics as: design and topology optimisation, inverse engineering, multibody dynamics, non-linear and railway dynamics, non-linear and textile composites, sandwich structures, uncertainty and reliability of structures, micromechanics of biological materials, computational geometry, multiscale strategies, discrete and mesh free elements, hybrid crack element, adaptive mesh generation, neural networks, structural model validation, vibro-acoustics, active aeroelastic structures, shells with incompressible flows, fluid-structure interaction, aeroelasticity, fluid-saturated and damage porous media and ceramics, high porosity solids, multiphase viscous porous material and masonry.
This is the first book on the subject of the periodic unfolding method (originally called "eclatement periodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.
Mechanical Vibrations: Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of model analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students, researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors |
![]() ![]() You may like...
Recent Advances in Applications of…
Snehashish Chakraverty, Sanjeewa Perera
Hardcover
R2,874
Discovery Miles 28 740
Possibility for Decision - A…
Christer Carlsson, Robert Fuller
Hardcover
R4,379
Discovery Miles 43 790
Computational Diffusion MRI - MICCAI…
Elisenda Bonet-Carne, Jana Hutter, …
Hardcover
R4,359
Discovery Miles 43 590
Time-dependent Problems in Imaging and…
Barbara Kaltenbacher, Thomas Schuster, …
Hardcover
R4,265
Discovery Miles 42 650
|