![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. his fourth volume concentrates on reviewing further relevant contemporary applications of chaotic and nonlinear dynamics as they apply to the various cuttingedge branches of science and engineering. This encompasses, but is not limited to, topics such as synchronization in complex networks and chaotic circuits, time series analysis, ecological and biological patterns, stochastic control theory and vibrations in mechanical systems. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a 'recipe book' full of tried and tested, successful engineering applications.
The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. p>
Initially a subfield of solid state physics, the study of mesoscopic systems has evolved over the years into a vast field of research in its own right. Keeping track its rapid progress, this book provides a broad survey of the latest developments in the field. The focus is on statistics and dynamics of mesoscopic systems with special emphasis on topics like quantum chaos, localization, noise and fluctuations, mesoscopic optics and quantum transport in nanostructures. Written with nonspecialists in mind, this book will also be useful to graduate students wishing to familiarize themselves with this field of research.
The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The current volume presents the state of the art research in this field. The contributions cover all the aspects of the novel composite systems, i.e. modeling from nano to macro scale, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as the capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospace composites.
This book gives state-of-the-art information about recent developments in the field of computational modeling of solid materials at finite strains. It contains papers presented at the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Today, computational methods and simulation techniques play a central role in advancing the understanding of complex material behavior. Material behavior is nowadays modeled in the strongly nonlinear range by taking into account finite strains, complex hysteresis effect, fracture phenomena and multiscale features. Progress in this field is of fundamental importance for many engineering disciplines, especially those concerned with material testing, safety, reliability and serviceability analyses of engineering structures. This book summarizes recent progress in the modeling of solid materials undergoing deformations large strains, where the mathematical and computational analysis is highly challenging due to the nonlinear geometry. A further key aspect of the volume is the modeling of multiscale characteristics of materials by homogenization approaches and variational methods. The volume provides a state of the art survey about theoretical and computational approaches to (i) modeling of large-strain elastic and inelastic deformations of solids on different length scales, (ii) mathematical analysis of finite inelastic deformations of solids based on incremental variational formulations for non-convex problems with microstructure developments and (iii) homogenization methods for the determination of effective overall properties of heterogeneous materials. The book allows researchers and engineers to get an excellent overview aboutthe computational methods for solid materials at finite strains.
This book represents the HELS (Helmholtz equation least squares) theory and its applications for visualizing acoustic radiation from an arbitrarily shaped vibrating structure in free or confined space. It culminates the most updated research work of the author and his graduate students since 1997. The book contains six chapters. The first serves as a review of the fundamentals in acoustics and the rest cover five specific topics on the HELS theory.
The author applies methods of nonlinear elasticity to investigate the defects in the crystal structure of solids such as dislocations and disclinations that characterize the plastic and strength properties of many materials. Contrary to the geometrically motivated nonlinear theory of dislocations continuously distributed over the body, nonlinear analysis of isolated dislocations and disclinations is less developed; it is given for the first time in this book, and in a form accessible to both students and researchers. The general theory of Volterra's dislocations in elastic media under large deformations is developed. A number of exact solutions are found. The nonlinear approach to investigating the isolated defects produces results that often differ qualitatively from those of the linear theory.
This book provides an in-depth background to better understanding
of finite element results and techniques for improving accuracy of
finite element methods. Thus, the reader is able to identify and
eliminate errors contained in finite element models. Three
different error analysis techniques are systematically developed
from a common theoretical foundation: 1) modeling erros in
individual elements; 2) discretization errors in the overall model;
3) point-wise errors in the final stress or strain results. * New, simpler element formulation techniques, model-independent
results, and error measures
This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attention, instead of presenting a long inventory of scientific achievements.
The 5th International Congress on Design and Modeling of Mechanical Systems (CMSM) was held in Djerba, Tunisia on March 25-27, 2013 and followed four previous successful editions, which brought together international experts in the fields of design and modeling of mechanical systems, thus contributing to the exchange of information and skills and leading to a considerable progress in research among the participating teams. The fifth edition of the congress (CMSM2013), organized by the Unit of Mechanics, Modeling and Manufacturing (U2MP) of the National School of Engineers of Sfax, Tunisia, the Mechanical Engineering Laboratory (MBL) of the National School of Engineers of Monastir, Tunisia and the Mechanics Laboratory of Sousse (LMS) of the National School of Engineers of Sousse, Tunisia, saw a significant increase of the international participation. This edition brought together nearly 300 attendees who exposed their work on the following topics: mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, design and manufacturing of mechanical systems. This book is the proceedings of CMSM2013 and contains a careful selection of high quality contributions, which were exposed during various sessions of the congress. The original articles presented here provide an overview of recent research advancements accomplished in the field mechanical engineering.
Structurally Constrained Controllers: Analysis and Synthesis studies the control of interconnected systems with a particular application in network, power systems, flight formations, etc. It introduces four important problems regarding the control of such systems and then proposes proper techniques for solving them.
Collapsing engineering soils are a formidable hazard around the world. These difficult materials also include some of the world's most fertile agricultural soils, fostering dense human populations which are therefore increasingly at risk. Despite an impressive literature on the engineering aspects of collapsing soils, these materials are coming under increasing scrutiny by scientists in other fields. This is most evidently the case with soil scientists, stratigraphers and sedimentologists. Past earth surface conditions have a direct influence on the detailed behaviour of collapsible soils: as a complement, these materials also provide detailed data on changing global climates. The selected papers presented here highlight the common ground between three scientific groups with a vested interest in a better understanding of collapsible soils.
In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.
This book offers a compact introduction to modern linear control design. The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability. The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension.
The use of precast concrete is a well-established construction technique for beams, floors, panels, piles, walls and other structural elements. The advan tages of precasting include excellent quality control, economical large scale production, improved construction productivity (especially in adverse weather conditions) and immediate structure availability. These advantages have been recognized for precast concrete raft pavement units (raft units) since their introduction in the 1930s. In the last ten years there has been a considerable increase in the use ofraft units, especially in their range of applications, their analysis and their design. However, the description of these developments has been published in academicjournals and conference proceedings which are not readily available to practising raft unit pavement design engineers. Pavement design engineers are underincreasingpressure to produce raft unit designs that are inexpensive, long lasting and able to allow reorganization to accommodate changing use and uncertainty offuture loading requirements. This is the first book devoted to raft unit pavements, and will become a standard work of reference."
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations.Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals.This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.
A discussion of models for the behaviour of gas bearings, particularly of the aspects affecting the stability of the system. The text begins with a discussion of the mathematical models, identifying the stiffness and damping coefficients, and describing the behaviour of the models in unstable regions. It then turns to apply these results to bearings: static characteristics and stability of various rotor systems and an extensive discussion of air rings.
Active Braking Control Design for Road Vehicles focuses on two main brake system technologies: hydraulically-activated brakes with on-off dynamics and electromechanical brakes, tailored to brake-by-wire control. The physical differences of such actuators enjoin the use of different control schemes so as to be able fully to exploit their characteristics. The authors show how these different control approaches are complementary, each having specific peculiarities in terms of either performance or of the structural properties of the closed-loop system. They also consider other problems related to the design of braking control systems, namely: * longitudinal vehicle speed estimation and its relationship with braking control system design; * tire-road friction estimation; * direct estimation of tire-road contact forces via in-tire sensors, providing a treatment of active vehicle braking control from a wider perspective linked to both advanced academic research and industrial reality.
This book includes a numerical investigation of shear localization in granular materials within micro-polar hypoplasticity, which was carried out during my long research stay at the Institute of Soil and Rock Mechanics at Karlsruhe University from 1985 to 1996. I dedicate my book to Prof. Gerd Gudehus from Germany, the former head of the Institute of Rock and Soil Mechanics at Karlsruhe University and the supervisor of my scientific research during my stay in Karlsruhe, who encouraged me to deal with shear localization in granular bodies within micro-polar hypoplasticity. I greatly - preciate his profound knowledge, kind help constructive discussions, and collegial attitude to his co-workers. I am thankful to the both series editors: Prof. Wei Wu from Universitat fur Bodenkultur in Austria and Prof. Ronaldo Borja from Stanford University in USA for their helpful suggestions with respect to the contents and structure of the book. I am also grateful to Dr. Thomas Ditzinger and Mrs. Heather King from the Springer Publishing Company and SPS data processing team for their help in editing this book. Gdansk, Jacek Tejchman June 2008 Contents 1 Introduction......................................................................... 1 2 Literature Overview on Experiments........................................... 11 3 Theoretical Model.................................................................. 47 3.1 Hypoplastic Constitutive Model............................................. 47 3.2 Calibration of Hypoplastic Material Parameters........................... 60 3.3 Micro-polar Continuum........................................................ 67 3.4 Micro-polar Hypoplastic Constitutive Model.............................. 72 3.5 Finite Element Implementation................................................ 75 4 Finite Element Calculations: Preliminary Results............................
This book presents solutions to control problems in a number of robotic systems and provides a wealth of worked-out examples with full analytical and numerical details, graphically illustrated to aid in reader comprehension. It also presents relevant studies on and applications of robotic system control approaches, as well as the latest findings from interdisciplinary theoretical studies. Featuring chapters on advanced control (fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis, and fault-tolerant control), the book will equip readers to easily tailor the techniques to their own applications. Accordingly, it offers a valuable resource for researchers, engineers, and students in the field of robotic systems.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 5: Advanced Transmission System and Driveline focuses on: *Clutch System and Controls *Gear Systems and Driveline *Advanced Transmission System *Transmission Control System Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
This Volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling Laws in Ice Mechanics and Ice Dynamics', held in Fairbanks, Alaska from 13th to 16th of June 2000. Ice mechanics deals with essentially intact ice: in this discipline, descriptions of the motion and deformation of Arctic/ Antarctic and river/lake ice call for the development of physically based constitutive and fracture models over an enormous range in scale: 0.01 m - 10 km. Ice dynamics, on the other hand, deals with the movement of broken ice: descriptions of an aggregate of ice floes call for accurate modeling of momentum transfer through the sea/ice system, again over an enormous range in scale: 1 km (floe scale) - 500 km (basin scale). For ice mechanics, the emphasis on lab-scale (0.01 - 0.5 m) research con trasts with applications at the scale of order 1 km (ice-structure interaction, icebreaking); many important upscaling questions remain to be explored.
In this book, a new phenomenological approach to brittle medium fractu re initiation under shock pulses is developed. It provides an opportun ity to estimate fracture of media with and without macrodefects. A qua litative explanation is thus obtained for a number of principally impo rtant effects of high-speed dynamic fracture that cannot be clarified within the framework of previous approaches. It is possible to apply t his new strategy to resolve applied problems of disintegration, erosio n, and dynamic strength determination of structural materials. Special ists can use the methods described to determine critical characteristi cs of dynamic strength and optimal effective fracture conditions for r igid bodies. This book can also be used as a special educational cours e on deformation of materials and constructions, and fracture mechanic s.
This book provides an up-to-date introduction to the theory of sound propagation in the ocean. The text treats both ray and wave propagation and pays considerable attention to stochastic problems such as the scattering of sound at rough surfaces and random inhomogeneities. An introductory chapter that discusses the basic experimental data complements the following theoretical chapters. New material has been added throughout for this third edition. New topics covered include: - inter-thermocline lenses and their effect on sound fields- weakly divergent bundles of rays - ocean acoustic tomography - coupled modes - sound scattering by anisotropic volume inhomogeneities with fractal spectra - Voronovich's approach to sound scattering from the rough sea surface. In addition, the list of references has been brought up to date and the latest experimental data have been included. |
![]() ![]() You may like...
|