![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of solids
This book presents a systematic treatise on micromechanics and nanomechanics, which encompasses many important research and development areas such as composite materials and homogenizations, mechanics of quantum dots, multiscale analysis and mechanics, defect mechanics of solids including fracture and dislocation mechanics, etc.In this second edition, some previous chapters are revised, and some new chapters added - crystal plasticity, multiscale crystal defect dynamics, quantum force and stress, micromechanics of metamaterials, and micromorphic theory.The book serves primarily as a graduate textbook and intended as a reference book for the next generation of scientists and engineers. It also has a unique pedagogical style that is specially suitable for self-study and self-learning for many researchers and professionals who do not have time attending classes and lectures.
This book presents a systematic treatise on micromechanics and nanomechanics, which encompasses many important research and development areas such as composite materials and homogenizations, mechanics of quantum dots, multiscale analysis and mechanics, defect mechanics of solids including fracture and dislocation mechanics, etc.In this second edition, some previous chapters are revised, and some new chapters added - crystal plasticity, multiscale crystal defect dynamics, quantum force and stress, micromechanics of metamaterials, and micromorphic theory.The book serves primarily as a graduate textbook and intended as a reference book for the next generation of scientists and engineers. It also has a unique pedagogical style that is specially suitable for self-study and self-learning for many researchers and professionals who do not have time attending classes and lectures.
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as: acoustics, cognitive science, speech science, and communication technology.
This book provides readers with a snapshot of recent methods for non-stationary vibration analysis of machinery. It covers a broad range of advanced techniques in condition monitoring of machinery, such as mathematical models, signal processing and pattern recognition methods and artificial intelligence methods, and their practical applications to the analysis of nonstationarities. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-Stationary Operations, CMMNO'2016, held on September 12 - 16, 2016, in Gliwice, Poland. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. By presenting state-of-the-art in predictive maintenance solutions and discussing important industrial issues the book offers a valuable resource to both academics and professionals and is expected to facilitate communication and collaboration between the two groups.
This book presents the mechanics of piezoelectric semiconductor structures where the main electromechanical coupling of interest is the interaction between mechanical fields and semiconduction. This volume stands as the first full book treatment of this multi-physical subject from the mechanics angle. The analysis of piezoelectric semiconductor structures and devices is an emerging and rapidly growing interdisciplinary area involving materials, electronics, and solid mechanics. It has direct applications in the new area of piezotronics and piezo-phototronics. The book is theoretical, beginning with a phenomenological framework and progressing to include solutions to problems fundamental to the theory and application. Dr. Yang illustrates how in piezoelectric semiconductors, mechanical fields interact with semiconduction through the piezoelectrically produced electric fields by mechanical loads. This provides the foundation of piezotronic and piezo-phototronic devices in which semiconduction is induced, affected, manipulated, or controlled by mechanical fields. Also discussing composite structures of piezoelectric dielectrics and nonpiezoelectric semiconductors as well as thermal effects, the book is an ideal basic reference on the topic for researchers.
Keep Up with Advancements in the Field of Rail Vehicle Design A thorough understanding of the issues that affect dynamic performance, as well as more inventive methods for controlling rail vehicle dynamics, is needed to meet the demands for safer rail vehicles with higher speed and loads. Design and Simulation of Rail Vehicles examines the field of rail vehicle design, maintenance, and modification, as well as performance issues related to these types of vehicles. This text analyzes rail vehicle design issues and dynamic responses, describes the design and features of rail vehicles, and introduces methods that address the operational conditions of this complex system. Progresses from Basic Concepts and Terminology to Detailed Explanations and Techniques Focused on both non-powered and powered rail vehicles-freight and passenger rolling stock, locomotives, and self-powered vehicles used for public transport-this book introduces the problems involved in designing and modeling all types of rail vehicles. It explores the applications of vehicle dynamics, train operations, and track infrastructure maintenance. It introduces the fundamentals of locomotive design, multibody dynamics, and longitudinal train dynamics, and discusses co-simulation techniques. It also highlights recent advances in rail vehicle design, and contains applicable standards and acceptance tests from around the world. * Includes multidisciplinary simulation approaches * Contains an understanding of rail vehicle design and simulation techniques * Establishes the connection between theory and many simulation examples * Presents simple to advanced rail vehicle design and simulation methodologies Design and Simulation of Rail Vehicles serves as an introductory text for graduate or senior undergraduate students, and as a reference for practicing engineers and researchers investigating performance issues related to these types of vehicles.
From jet engine noise that generates vibrations in the structure of an aircraft, to the sound radiation from the hull of a ship or submarine that makes it identifiable, an understanding of structural acoustics is key in the design process in maritime, automotive, aerospace, and architectural engineering. Building on classic works in the field, Structural Acoustics: Deterministic and Random Phenomena presents fundamental concepts, relations, and simplified methods for calculating complex problems associated with vibrations and noise issues of automobiles, ships, submarines, and aircraft. This practical reference studies the response of structures and media that are coupled with a fluid and are under static, dynamic, and random loading. Simplified solutions to complicated problems Starting with a review of the fundamentals of acoustics and structural acoustics, the book discusses the response of the beams, plates, and shells that compose most built-up structures before providing methods for solving problems of built-up systems, including a procedure for computing the response of an elastic or viscoelastic media without resorting to a large computer program. Building on this analysis, the second section develops the analysis for random loading, which can also be applied to geophysical phenomena and viscoelastic media. Proceeding from the fundamental aspects of simple structures to more complicated cases with more involved loading, the book presents formulas and applications for random loading. By providing a fundamental understanding of sound radiation in air and water, this book shows readers how to solve structural and acoustical problems. An important reference for those working in the area of acoustics and vibration analysis, it also includes computer programs for acoustical analysis available at www.crcpress.com.
The purpose of this book is to give a basic understanding of rotor dynamics phenomena with the help of simple rotor models and subsequently, the modern analysis methods for real life rotor systems. This background will be helpful in the identification of rotor-bearing system parameters and its use in futuristic model-based condition monitoring and, fault diagnostics and prognostics. The book starts with introductory material for finite element methods and moves to linear and non-linear vibrations, continuous systems, vibration measurement techniques, signal processing and error analysis, general identification techniques in engineering systems, and MATLAB analysis of simple rotors. Key Features: * Covers both transfer matrix methods (TMM) and finite element methods (FEM) * Discusses transverse and torsional vibrations * Includes worked examples with simplicity of mathematical background and a modern numerical method approach * Explores the concepts of instability analysis and dynamic balancing * Provides a basic understanding of rotor dynamics phenomena with the help of simple rotor models including modern analysis methods for real life rotor systems.
Shock-induced dynamic fracture of solids is of practical importance in many areas of materials science, chemical physics, engineering, and geophysics. This book, by an international roster of authors, comprises a systematic account of the current state of research in the field, integrating the large amount of work done in the former Soviet Union with the work done in the West. Topics covered include: Wave propagation, experimental techniques and measurements, spallation of materials of different classes (metals, ceramics, glasses, polymers), constitutive models of fracture processes, and computer simulations.
This edition features a new chapter on computational methods that presents the basic principles on which most modern computer programs are developed. It introduces an example on rotor balancing and expands on the section on shock spectrum and isolation.
This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.
This well-organized book uses 3x3 coordinate-transformation matrices and 3-element vectors with dual-number elements to analyze the mechanics of mechanism, robots, and other mechanical systems.
This is the first book of its kind that describes the use of ANSYS (R) finite element analysis (FEA) software, and MATLAB (R) engineering programming software to solve acoustic problems. It covers simple text book problems, such as determining the natural frequencies of a duct, to progressively more complex problems that can only be solved using FEA software, such as acoustic absorption and fluid-structure-interaction. It also presents benchmark cases that can be used as starting points for analysis. There are practical hints too for using ANSYS software. The material describes how to solve numerous problems theoretically, and how to obtain solutions from the theory using MATLAB engineering software, as well as analyzing the same problem using ANSYS Workbench and ANSYS Mechanical APDL. Free downloads are provided on http://www.mecheng.adelaide.edu.au/avc/software, including MATLAB source code, ANSYS APDL models, and ANSYS Workbench models Includes readers' techniques and tips for new and experienced users of ANSYS software Identifies bugs and deficiencies to help practitioners avoid making mistakes It can be used as a textbook for graduate students in acoustics, vibration, and related areas in engineering; undergraduates in mechanical and electrical engineering; and as an authoritative reference for industry professionals.
The second edition provides an update of the recent developments in classical and computational solid mechanics. The structure of the book is also updated to include five new areas: Fundamental Principles of Thermodynamics and Coupled Thermoelastic Constitutive Equations at Large Deformations, Functional Thermodynamics and Thermoviscoelasticity, Thermodynamics with Internal State Variables and Thermo-Elasto-Viscoplasticity, Electro-Thermo-Viscoelasticity/Viscoplasticity, and Meshless Method. These new topics are added as self-contained sections or chapters. Many books in the market do not cover these topics.This invaluable book has been written for engineers and engineering scientists in a style that is readable, precise, concise, and practical. It gives the first priority to the formulation of problems, presenting the classical results as the gold standard, and the numerical approach as a tool for obtaining solutions.
Effectively Construct Integral Formulations Suitable for Numerical Implementation Finite Element and Boundary Methods in Structural Acoustics and Vibration provides a unique and in-depth presentation of the finite element method (FEM) and the boundary element method (BEM) in structural acoustics and vibrations. It illustrates the principles using a logical and progressive methodology which leads to a thorough understanding of their physical and mathematical principles and their implementation to solve a wide range of problems in structural acoustics and vibration. Addresses Typical Acoustics, Electrodynamics, and Poroelasticity Problems It is written for final-year undergraduate and graduate students, and also for engineers and scientists in research and practice who want to understand the principles and use of the FEM and the BEM in structural acoustics and vibrations. It is also useful for researchers and software engineers developing FEM/BEM tools in structural acoustics and vibration. This text: Reviews current computational methods in acoustics and vibrations with an emphasis on their frequency domains of applications, limitations, and advantages Presents the basic equations governing linear acoustics, vibrations, and poroelasticity Introduces the fundamental concepts of the FEM and the BEM in acoustics Covers direct, indirect, and variational formulations in depth and their implementation and use are illustrated using various acoustic radiation and scattering problems Addresses the exterior coupled structural-acoustics problem and presents several practical examples to demonstrate the use of coupled FEM/BEM tools, and more Finite Element and Boundary Methods in Structural Acoustics and Vibration utilizes authors with extensive experience in developing FEM- and BEM-based formulations and codes and can assist you in effectively solving structural acoustics and vibration problems. The content and methodology have been thoroughly class tested with graduate students at University of Sherbrooke for over ten years.
Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.
This book focuses on the development and methodologies of trajectory control of differential-drive wheeled nonholonomic mobile robots. The methodologies are based on kinematic models (posture and configuration) and dynamic models, both subject to uncertainties and/or disturbances. The control designs are developed in rectangular coordinates obtained from the first-order sliding mode control in combination with the use of soft computing techniques, such as fuzzy logic and artificial neural networks. Control laws, as well as online learning and adaptation laws, are obtained using the stability analysis for both the developed kinematic and dynamic controllers, based on Lyapunov's stability theory. An extension to the formation control with multiple differential-drive wheeled nonholonomic mobile robots in trajectory tracking tasks is also provided. Results of simulations and experiments are presented to verify the effectiveness of the proposed control strategies for trajectory tracking situations, considering the parameters of an industrial and a research differential-drive wheeled nonholonomic mobile robot, the PowerBot. Supplementary materials such as source codes and scripts for simulation and visualization of results are made available with the book.
Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses.
Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting with classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including jet noise, flow tones, dipole sound from cylinders, and cavitation noise. Step-by-step derivations clearly identify any assumptions made throughout. Each chapter is illustrated with comparisons of leading formulas and measured data. Along with its companion, Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be essential reading for postgraduate students, and for engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation.
Providing a basic foundation for advanced graduate study and research in the mechanics of solids, this 2004 treatise contains a systematic development of the fundamentals of finite inelastic deformations of heterogeneous materials. The book combines the mathematical rigour of solid mechanics with the physics-based micro-structural understanding of the material science, to present a coherent picture of finite inelastic deformation of single and polycrystalline metals, over broad ranges of strain rates and temperatures. It also includes a similarly rigourous and experimentally based development of the quasi-static deformation of cohesionless granular materials that support the applied loads through contact friction. Every effort has been made to provide a thorough treatment of the subject, rendering the book accessible to students in solid mechanics and in the mechanics of materials. This book integrates rigourous mathematical description of finite deformations seamlessly with mechanisms based on micromechanics in order to produce useful results with relevance to practical problems.
Today's manufacturers are under tremendous pressure to develop new technological and high reliability products in record time. This has motivated reliability engineers to evaluate the reliabilities of such products. Reliability testing under accelerated environment - accelerated life testing helps to meet this challenge.This comprehensive and must-have edition provides a broad coverage of the optimal design of Accelerated Life Test Plans under time-varying stress loadings. It also focuses on the formulation of Accelerated Life Test Sampling Plans (ALTSPs) which integrate accelerated life tests with quality control technique of acceptance sampling plans. These plans help to determine optimal experimental variables such as appropriate stress levels, optimal allocation at each stress levels, stress change points, etc, depending on the stress loading scheme. ALTSPs determine optimal plans such that the producers' and consumers' risks are safeguarded.
Much time is spent working out how to optimize the acoustics of large rooms, such as auditoria, but the acoustics of small rooms and environments can be just as vital. The expensive sound equipment of a recording studio or the stereo in a car or living room is likewise rendered useless if the acoustic environment is not right for them. Changes in wavelength to room size ratio and the time difference between the direct and reflected sound at the listening location mean that the acoustics of small spaces are quite different to those of large spaces. Tackling these specific aspects of physics, sound perception, and applications for small spaces, Acoustics of Small Rooms brings together important facets of small room acoustics. Divided into clear sections, it covers: Sound propagation-the effects of boundaries, sound absorbers, and time conditions Physiology and psychoacoustics Methods and techniques of room and sound field optimization Examples of how these principles apply in real situations Measurement and modeling techniques
Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world's most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.
This book presents various state-of-the-art applications for the development of new materials and technologies, discussing computer-based engineering tools that are widely used in simulations, evaluation of data and design processes. For example, modern joining technologies can be used to fabricate new compound or composite materials, even those composed of dissimilar materials. Such materials are often exposed to harsh environments and must possess specific properties. Technologies in this context are mainly related to the transportation technologies in their wider sense, i.e. automotive and marine technologies, including ships, amphibious vehicles, docks, offshore structures, and robots. This book highlights the importance the finite element and finite volume methods that are typically used in the context of engineering simulations.
The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics. |
![]() ![]() You may like...
Geodetic Sciences - Theory, Applications…
Bihter Erol, Serdar Erol
Hardcover
R3,399
Discovery Miles 33 990
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
Dynamic Deformation, Damage and Fracture…
Vadim V. Silberschmidt
Hardcover
R7,059
Discovery Miles 70 590
Computer Methods, Imaging and…
Gerard A. Ateshian, Kristin M. Myers, …
Hardcover
R4,521
Discovery Miles 45 210
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,821
Discovery Miles 38 210
|