![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Medical genetics
This volume presents a valuable and readily reproducible collection of established and emerging techniques on modern genetic analyses. Chapters focus on statistical or data mining analyses, genetic architecture, the burden of multiple testing, genetic variance, measuring epistasis, multifactor dimensionality reduction, and ReliefF. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Epistasis: Methods and Protocols aids scientists in continuing to study elucidate epistasis in the context of modern data availability.
This book explores Dental Stem Cell (DSC) biology, from a review of basic concepts for cell culture, to isolation, self-renewal, multipotency and differentiation, regulation by molecular medicine, and prospective research areas for regenerative medicine. The first seven chapters delve into basic DSC properties, vital signaling pathways involved in differentiation, pluripotency, iPS cell development from DSCs, and genetic engineering approaches of DSCs in accordance with the current literature. A comprehensive review of possible clinical applications and in vitro/in vivo studies follows, illustrating the future of DSC research for in the tissue engineering field. The text also discusses the political, ethical, social, and legal ramifications of the use of dental stem cells. Expertly authored and drawing from a multitude of international perspectives, Dental Stem Cells is an invaluable addition to Springer's Stem Cell Biology and Regenerative Medicine series. It is essential reading for advanced graduate students, basic researchers, and clinical investigators in the fields of stem cell therapy, biological sciences of dentistry, and regenerative medicine.
Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase."
Bioinformatics is an integrative field of computer science, genetics, genomics, proteomics, and statistics, which has undoubtedly revolutionized the study of biology and medicine in past decades. It mainly assists in modeling, predicting and interpreting large multidimensional biological data by utilizing advanced computational methods. Despite its enormous potential, bioinformatics is not widely integrated into the academic curriculum as most life science students and researchers are still not equipped with the necessary knowledge to take advantage of this powerful tool. Hence, the primary purpose of our book is to supplement this unmet need by providing an easily accessible platform for students and researchers starting their career in life sciences. This book aims to avoid sophisticated computational algorithms and programming. Instead, it mostly focuses on simple DIY analysis and interpretation of biological data with personal computers. Our belief is that once the beginners acquire these basic skillsets, they will be able to handle most of the bioinformatics tools for their research work and to better understand their experimental outcomes. Unlike other bioinformatics books which are mostly theoretical, this book provides practical examples for the readers on state-of-the-art open source tools to solve biological problems. Flow charts of experiments, graphical illustrations, and mock data are included for quick reference. Volume I is therefore an ideal companion for students and early stage professionals wishing to master this blooming field.
This volume focuses on cytological, biochemical, and molecular biological methods to identify and examine the function of each nuclear body, with an emphasis on the analysis of long non-coding RNAs. Chapters focus on exploring recent studies that reveal how certain long non protein-coding RNAs accumulate in specific nuclear bodies and regulate the function of the bodies by serving as architectural components or controlling the dynamics of associating protein components. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nuclear Bodies and Noncoding RNAs: Methods and Protocols serves as a guideline for further study into the sophisticated regulation of gene expression.
This detailed volume will focus on the phenomenon of RNA interference by providing comprehensive coverage of various techniques for in vivo micro/siRNA imaging including the design and synthesis of specific imaging agents and tools, the development of imaging methodologies, and their interpretation. An essential element in the development and optimization of these therapies is the ability to measure the bioavailability and functionality of the RNA/oligonucleotide molecule after administration into the body. Noninvasive imaging provides the necessary set of tools to accomplish this in authentic physiologic environments and across time. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Imaging: Methods and Protocols serves physicians, scientists, and graduate students who are either new to the field of RNA-based imaging and its associated therapeutic applications or who wish to be apprised of recent advances in the state of the art.
Synthetic mRNA is an attractive tool for mammalian cell reprogramming that can be used in basic research, as well as in clinical applications. Present mRNA in vitro synthesis is a rather simple procedure, which delivers a high yield of quality product. Various modifications may be introduced into the mRNA by changing the sequence of the DNA template, by modifying the reaction of transcription, or by post-transcriptional modification. mRNA, as a transfection agent, has several advantages over DNA, as mRNA expression is not dependent on nuclear entry and occurs directly in the cytosol. Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols covers the typical main methods, such as mRNA synthesis, modifications, and delivery. Examples of cell reprogramming and analysis in the fields of immunotherapy and stem cell research are also included. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols will be of interest to researchers, clinicians, and biotech companies interested in mRNA-mediated cell reprogramming.
This unique book explores the role of retrotransposons in human health and disease. The ability of retrotransposons to affect the structure of human genes is recognized since the late 80's. However, the advances of deep-sequencing technologies have shed new light on the extent of retrotransposon-mediated genome variations. These progresses have also led to the discovery that retrotransposon activity is not restricted to the germline - resulting in inheritable genetic variations - but can also mobilize in somatic tissues, such as embryonic stem cells, neuronal progenitor cells, or in many cancers. This book covers topics related to the effects of retrotransposon insertions, and their consequences on germline and somatic genome dynamics, but also discuss the role and impact of retrotransposons sequences in a broader context, including a number of novel topics that emerged recently (long non-coding RNA, neuronal disorders, exaptation) with unexpected connections between retrotransposons, stem cell maintenance, placentation, circadian cycles or aging.
This superbly structured text is designed for practical ease of use. Quick and easy to read, it bridges the gap between primary literature and daily practice in this specialized field. Neuro-ophthalmology encompasses lesions of both the afferent and efferent pathways, which can result from various etiologies, including tumoral, paraneoplastic, vascular, inflammatory, infectious, or hereditary just to name a few. This volume of Essentials in Ophthalmology is dedicated to the review of new developments in neuro-ophthalmology. It has been written by an array of authors with real expertise in the subject. The text includes all the latest developments, including those in diagnosis, physiology, investigations, and in therapeutic options.
Hedgehog-GLI Signaling in Human Disease represents the first compilation of up-to-date reviews by top-level scientists in this important field of research. The chapters cover a wide spectrum of related interests, from the molecular bases of morphogen function, to human genetics to cancer research. The aim of the book is to disseminate information on this exciting field, to allow students, scientists and the public in general to gain access current information from research leaders and to provide a book that encompasses different aspects of research showing the fusion of basic research in model systems and medicine. This is a timely primer on how a system of cell communication, Hedgehog-GLI signaling, plays a critical role in human disease and thus provides the background for the development of novel and rational therapies.
The Biogenesis of Cellular Organelles represents a comprehensive summary of recent advances in the study of the biogenesis and functional dynamics of the major organelles operating in the eukaryotic cell. This book begins by placing the study of organelle biogenesis in a historical perspective by describing past scientific strategies, theories, and findings and relating these foundations to current investigations. Reviews of protein and lipid mediators important for organelle biogenesis are then presented, and are followed by summaries focused on the endoplasmic reticulum, Golgi, lysosome, nucleus, mitochondria, and peroxisome. All chapters are written by experts in their fields and, though concentrated on particular topics, are integrated under the general themes of organelle structure, function, dynamics, and biogenesis. An understanding of these concepts is important for all researchers and students interested in general cell biology and particularly to those with interests in organelle function.
Recent stem cell research has revealed that miRNA and RNAi-mediated gene regulation is one of the vital determinates controlling the state of cell differentiation, with the small RNAs serving as key elements involved in regulatory network control of pluripotent cell fate determination. In RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications, expert authors from laboratories across the globe contribute an accessible compendium of up-to-date, proven methods focused on the study of the titular topic. Divided into three sections, the book first gives a brief introduction to RNAi and miRNAs in stem cells, with a focus on the current status of research and future perspectives, then it continues with detailed methods and protocols for RNAi screening, transfection, and the knockdown of specific genes and pathways in several animal species, including humans and mice, concluding with a section on recently developed methods for identification of miRNAs, including a general protocol for preparation and analysis of miRNA libraries for deep sequencing, knock down of a specific gene using miRNA-based shRNA, and miRNA expression analysis using qRT-PCR. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes highlighting tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNAi and microRNA-Mediated Gene Regulation in Stem Cells: Methods, Protocols, and Applications serves as a valuable resource for scientists and aspiring graduate students interested in the intersection of RNAi, miRNA, and stem cell molecular biology and the exciting areas of medicine, including regenerative medicine, aging, cancer, and neurological disorders, that can be advanced through this expanding area of research.
Accumulating evidence supports the role of defects in post-transcriptional gene regulation in the development of cancer. RNA and Cancer examines the recent advances in our understanding of post-transcriptional gene regulation, especially RNA processing and its role in cancer development and treatment. A particular focus is mRNA splicing, but other topics such as microRNAs, mRNA stability, the perinucleolar compartment, and oligonucleotide therapeutics are also covered in detail. All chapters have been written by internationally renowned experts. The book is intended for all with an interest in gene regulation and cancer biology, and especially for those not directly working on RNA biology, including clinicians and medical students. It is hoped that it will stimulate further innovative research collaborations between RNA biologists and cancer researchers to the benefit of patients.
* Discusses cancer cell biology in relation to Genome stability and Cell cycle regulation Unique assembly of experts in these fields who wrote a comprehensive and deep up-to-date overview Discusses models for the understanding of DNA damage-dependent signal transduction and regulation in human cells Since the establishment of the DNA structure researchers have been highly interested in the molecular basis of the inheritance of genes and of genetic disorders. Scientific investigations of the last two decades have shown that, in addition to oncogenic viruses and signalling pathways alterations, genomic instability is important in the development of cancer. This view is supported by the findings that aneuploidy, which results from chromosome instability, is one of the hallmarks of cancer cells. Chromosomal instability also underpins our fundamental principles of understanding tumourigenesis: It thought that cancer arises from the sequential acquisition of genetic alterations in specific genes. In this hypothesis, these rare genetic events represent rate-limiting bottlenecks' in the clonal evolution of a cancer, and pre-cancerous cells can evolve into neoplastic cells through the acquisition of somatic mutations. This book is written by international leading scientists in the field of genome stability. Chapters are devoted to genome stability and anti-cancer drug targets, histone modifications, chromatin factors, DNA repair, apoptosis and many other key areas of research. The chapters give insights into the newest development of the genome stability and human diseases and bring the current understanding of the mechanisms leading to chromosome instability and their potential for clinical impact to the reader.
Edward B. Lewis' science is the bridge linking experimental genetics as conducted in the first half of the 20th century, and the powerful molecular genetic approaches that revolutionized the field in its last quarter. His Nobel Prize winning studies founded the field of developmental genetics and laid the groundwork for our current understanding of the universal, evolutionarily conserved strategies controlling animal development. A lesser-known aspect of Lewis' canon is the pioneering studies he carried out on ionizing radiation and human cancer. In doing so, he was propelled into a public storm over nuclear weapons testing policy. For the first time Lewis' key publications in the fields of genetics, developmental biology, radiation and cancer are compiled within one volume. commentaries on the papers placing them in their scientific and historical context and, throughout, giving insight into Lewis' approach to science and the motivations that drove Lewis' choice of subject matter. This book will be invaluable to a wide audience of professionals in the life and biomedical sciences; including geneticists, developmental biologists, molecular biologists, radiation biologists and cancer researchers. It provides source material for advanced undergraduate and graduate level courses in genetics, developmental biology, radiation and cancer. In addition, historians of science will find it to be a valuable resource both because it contains original research publications and because of the illuminating commentary.
Sendai virus (SeV) is not just a mouse pathogen but is evolving into a cutting-edge component of biotechnology. SeV reverse genetics originating from a pure academic need to settle long-held questions in the biology and pathogenicity of nonsegmented negative strand RNA viruses (Mononegavirales) is about to bear the impressive fruit of multipurpose cytoplasmic (non-integrating) RNA vectors. This book brings together in one source the SeV biology revealed by conventional approaches and reverse genetics, the methods to construct the first-generation SeV vector and to generate safer versions, and the applications in medical settings that have left or are about to leave the laboratory bench. The applications, which already are diverse and have high medical impact, include use as vaccine vectors against AIDS and respiratory virus infections, creation of BioKnife to resect malignant tumors, induction of "footprint (transgene) free" pluripotent stem cells, and gene therapy for peripheral arterial disease. These achievements-which are just a few of many examples-were attainable only after rigorously incorporating the rich knowledge of SeV biology that has accumulated during the several decades since the discovery of the virus. Application of SeV vector is certain to expand greatly because of its extremely high performance in transgene expression and its remarkable target cell breadth.
This title will focus on the study of human interphase chromosomes and its relation to health and disease. Orchestrated organization and human genome function in interphase nuclei at the chromosomal level have been repeatedly shown to play a significant role in a variety of basic biological processes involved in realization and inheritance of genetic information within and between species. Current biomedical sciences of post-genomic era refocus basic and applied studies of interphase nuclei genetics and genomics with special attention to interphase chromosome behavior in health and disease. Additionally, related processes are a target of studies elucidating the role of interphase chromosome behavior during development, chromosome/DNA replication, DNA reparation etc. Studies of interphase nuclei have an appreciable impact on different areas of biomedical sciences such as cell biology, neurobiology, cancer research, developmental biology, epigenetics, cytogenetics, and medical genetics, as a whole. Moreover, development of innovative and emergent technologies to analyze interphase nuclei are closely associated with application of these techniques in clinical, diagnostic and research practice to solve reproductive problems (including infertility and spontaneous abortions), to investigate congenital malformations (including those produced by aneuploidy and other chromosome abnormalities); genetic diseases (including cardiac, immune, neurological and psychiatric diseases), and cancer. This title will serve as a source of new valuable information and promising ideas for a wide audience of professionals in biomedicine including researchers, scientists, and healthcare professionals in human genetics, cytogenetics, and developmental biology.
Heart disease is the leading cause of death in developed countries. Recent experimental advances featuring cellular, molecular, and genetic tools and technologies offer the potential for new therapeutic strategies directed toward remediation of inherited and acquired heart diseases. Whether these recent basic science advances will ultimately translate to clinical efficacy for patients with heart disease is unknown and is important to ascertain. Cardiac Cell and Gene Transfer: Principles, Protocols, and Applications is designed to provide the reader with up-to-date coverage of a myriad of specific methodo- gies and protocols for gene and cell transfer to the myocardium. Each chapter features a "Notes" section that provides useful "how to" problem-solving insights that are often left unstated in standard published protocols. Cardiac Cell and Gene Transfer: Principles, Protocols, and Appli- tions addresses principles and applications of cell and gene transfer to the heart, including protocols for vector production and purification. Detailed step-by-step methods and applications for first/second-generation adenoviral vectors, adeno-associated vectors, gutted adenoviral vectors, and lentiviral vectors are included. Additionally, detailed methods for cardiac cell grafting and transplantation are provided, and these chapters highlight the prospects of cell-based therapies for cardiac repair. The book also covers specific in vivo techniques for cardiac gene transfer, and specifies subsequent cellular and organ-level physiological assessment techniques and protocols. Accordingly, this book is designed for basic science and clinical researchers in the academic, pharmaceutical, and biotechnology sectors of the cardiovascular community.
All physicians practicing medicine encounter patients suffering from cardiovascular disease. This book has been outlined in such a way that vascular surgeons, general internists, neurologists and cardiologists should be able to use it. The book covers the complete scope of cardiac diseases in addition to chapters on hypertension and atherosclerosis. In many patients there is a family history of cerebrovascular accidents, myocardial infarction or peripheral arterial disease. Also in patients reporting collaps, palpitations and arrhythmias the family is crucial and can provide clues to a genetic cause of the disease. This book is published to guide physicians in the process of determining whether a genetic component is likely to be present. Furthermore, information is provided what the possibilities and limitations of DNA diagnostic techniques are. Finally, the importance of newly identified categories of potential patients, i. e. gene carriers without symptoms or any inducible sign of disease, is highlighted. For some patients a genetic diagnosis is essential to determine appropriate therapy and for counseling? In some other diseases DNA diagnostic tools are available but the relevant for the patients may be less clear. In other families the search for a disease causing gene is ongoing and the possibilities to find genes and to unravel the pathophysiology of the disease is limited by the lack of patients. To give insight into the current state of genetic diagnostics, the authors have classified the cardiovascular diseases.
Structural Genomics and Drug Discovery: Methods and Protocols focuses on high throughput structure determination methods and how they can be applied to lay the groundwork for structure aided drug discovery. The methods and protocols that are described can be applied in any laboratory interested in using detailed structural information to advance the initial stages of drug discovery. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Structural Genomics and Drug Discovery: Methods and Protocols seeks to aid scientists in the further study into structural genomics approach as an efficient initial step toward drug discovery and the methods described will be useful to anyone interested in moving in this direction.
Ultimately, the quality of the tools available for genetic analysis and experimental disease models will be assessed on the basis of whether they provide new information that generates novel treatments for human disease. In addition, the time frame in which genetic discoveries impact clinical practice is also an important dimension of how society assesses the results of the significant public financial investment in genetic research. Because of the investment and the increased expectation that new tre- ments will be found for common diseases, allowing decades to pass before basic discoveries are made and translated into new therapies is no longer acceptable. Computational Genetics and Genomics: Tools for Understanding Disease provides an overview and assessment of currently available and developing tools for genetic analysis. It is hoped that these new tools can be used to identify the genetic basis for susceptibility to disease. Although this very broad topic is addressed in many other books and journal articles, Computational Genetics and Genomics: Tools for Understanding Disease focuses on methods used for analyzing mouse genetic models of biomedically - portant traits. This volume aims to demonstrate that commonly used inbred mouse strains can be used to model virtually all human disea- related traits. Importantly, recently developed computational tools will enable the genetic basis for differences in disease-related traits to be rapidly identified using these inbred mouse strains. On average, a decade is required to carry out the development process required to demonstrate that a new disease treatment is beneficial.
Genomic imprinting refers to a recently discovered phenomenon in which the expression pattern of an allele depends on whether that allele was inherited from the mother or the father. This difference in expression strategy correlates with differences in the epigenetic state of the two alleles. These epigenetic differences include DNA methylation at CpG dinucleotides, as well as modifications on the histones associated with the locus. In the simplest possible cases, the promoter region of the imprinted gene is methylated during oogenesis, but not spermatogenesis (or vice versa). This methylation (and its accompanying histone modifications) results in inactivation of the modified allele. Of course, most imprinted genes do not fall into this simplest case. The goal of this book is neither to provide a basic introduction to imprinting, nor to provide a comprehensive survey of the current state of the field (which would necessarily span multiple books). Rather, the book covers on some of the more recent advances, with the goal of drawing attention to some of the emerging subtleties and complexities associated with imprinted genes.
Precis This book is a treatise about the origin of cancers. I would like to convince readers that the basic tenets of the theory of a stem-cell origin of cancers also constitute a unified theory of cancer. Stem-cell origin of normal (and cancer) cells: Vitruvian version Every truth passes through three stages before it is recognized. In the first it is ridiculed, in the second, it is opposed, in the third, it is regarded as self-evident. - Arthur Schopenhauer v vi Preface Every person has a unique story to tell. My story is about cancer. Cancer touches the lives of countless people. Often enough, it leaves indelible tracks. Many lives have been lost; others are forever changed. For those who confront this deadly scourge, there is a sense of urgency, if not of desperation. For those who face im- nent death, life becomes even more precious and carries a special meaning. As an oncologist, I am touched daily by cancer. I feel its inception, evolution, and aft- math. It seems as though we are fighting an incessant war against cancer at the front line in the trenches. This is my story about cancer. Some people are terrific storytellers. Others have incredible tales to tell.
RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies. |
![]() ![]() You may like...
|