![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Medical genetics
Laser microdissection techniques have revolutionized the ability of researchers in general, and pathologists in particular, to carry out molecular analysis on specific types of normal and diseased cells and to fully utilize the power of current molecular technologies including PCR, microarrays, and proteomics. In second edition of Laser Capture Microdissection: Methods and Protocols, experts in the field provide the reader with practical advice on how to carry out tissue-based laser microdissection successfully in their own laboratory using the different laser microdissection systems that are available and to apply a wide range of molecular technologies. The individual chapters encompass detailed descriptions of the individual laser based micro-dissection systems. The downstream applications of the laser microdissected tissue described in the book include PCR in its many different forms as well as gene expression analysis including application to microarrays and proteomics. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Laser Capture Microdissection: Methods and Protocols, Second Edition is an ideal resource for researchers striving to move forward our understanding of normal physiology and pathology.
The endothelins are a remarkable family of signaling peptides: molecular biology predicted the existence of their receptors and synthetic enzymes prior to both the identification of the encoded proteins and the synthesis of antagonists and inhibitors for use as pharmacological tools. Although considerable advances have been made, culminating in the design of endothelin antagonists with the- peutic potential in cardiovascular disease, much remains to be discovered. Tantalizingly, new research frontiers are emerging. To support further progress, Peptide Research Protocols: Endothelin encompasses experimental protocols that interrogate all facets of an endogenous mammalian peptide s- tem, from peptide and receptor expression through synthetic pathway to peptide function and potential role in human disease. Chapters describe the use of molecular techniques to quantify the expression of mRNA for both endothelin receptors and the endothelin-converting enzymes. Peptides, precursors, receptors, and synthetic enzymes may be localized and quantified in plasma, culture supernatants, tissue homogenates, and tissue s- tions using antibodies, while additional information on receptor characterization may be obtained using radioligand binding techniques. Several protocols cover in vitro assays that determine the function of the endothelin peptides in isolated preparations, that characterize new endothelin receptor ligands, or provide inf- mation on the tissue-specific processing of endothelin precursor peptides.
This volume explores the latest developments in a novel area of molecular biology and a hot topic in the field of oncology: cancer stem cells. These chapters from expert contributing authors present concepts such as the universal stem cell, new molecular pathways, new targeted agents, the different roles that cancer stem cells seem to have according to the organ they are placed in, and the future role that targeting cancer stem cells may have in the management of patients in the clinic. Exploring the latest research including new data from randomized trials, this book examines important proposals over the origin of cancer stem cells such as the possibility that cancer stem cells may arise from mutated stem cells or a fully differentiated cell that may undergo several mutations that drive it back to a stem-like state. The authors consider the role that stem cells seem to have in the onset, development and resistance to classical antitumoral treatments of cancer and discuss possible potential future treatment modalities for the management of advanced cancer patients. The question, "Are stem cells involved in cancer?" may not have a simple answer, but ongoing investigations, in-depth consideration and a broad spectrum of information can be found in this book, allowing the reader to arrive at his or her own answer. This book will appeal to researchers in the field of oncology and cancer research and biomedical scientists with an interest in stem cells.
"Applied Computational Genomics" focuses on an in-depth review of statistical development and application in the area of human genomics including candidate gene mapping, linkage analysis, population-based, genome-wide association, exon sequencing and whole genome sequencing analysis. The authors are extremely experienced in the area of statistical genomics and will give a detailed introduction of the evolution in the field and critical evaluations of the advantages and disadvantages of the statistical models proposed. They will also share their views on a future shift toward translational biology. The book will be of value to human geneticists, medical doctors, health educators, policy makers, and graduate students majoring in biology, biostatistics, and bioinformatics. Dr. Yin Yao Shugart is investigator in the Intramural Research Program at the National Institute of Mental Health, Bethesda, Maryland USA. "
This volume contains 29 engrossing chapters contributed by worldwide, leading research groups in the field of chemical biology. Topics include pre-biology; the establishment of the genetic code; isomerization of RNA; damage of nucleobases in RNA; the dynamic structure of nucleic acids and their analogs in DNA replication, extra- and intra-cellular transport; molecular crowding by the use of ionic liquids; new technologies enabling the modification of gene expression via editing of therapeutic genes; the use of riboswitches; the modification of mRNA cap regions; new approaches to detect appropriately modified RNAs with EPR spectroscopy and the use of parallel and high-throughput techniques for the analysis of the structure and new functions of nucleic acids. This volume discusses how chemistry can add new frontiers to the field of nucleic acids in molecular medicine, biotechnology and nanotechnology and is not only an invaluable source of information to chemists, biochemists and life scientists but will also stimulate future research.
This volume presents a collection of computational and experimental protocols pertaining to the creation, characterization, and utilization of RNA nanostructures. The chapters in this book cover topics such as ion effects in RNA folding; design and crystallography of self-assembling RNA nanostructures; x-aptamer selection and validation; RNAi in HIV-infected cells; and preparation of a conditional RNA switch. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, RNA Nanostructures: Methods and Protocols is a valuable resource for the design and production of RNA nanostructures. Researchers and scientists sharing these detailed protocols is important for sustained progress in the field.
The numerous vital applications of complementary DNA (cDNA) technology have changed dramatically as the technology has advanced over recent years. In cDNA Libraries: Methods and Protocols, expert researchers provide current techniques that reflect the latest advances in the construction and application of cDNA libraries. The first half of the volume covers improved approaches to some of the most basic elements of creating cDNA libraries, while the second half casts a much wider net and includes visionary applications of cDNA technology which were either unforeseen or technically impractical until recently. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, cDNA Libraries: Methods and Protocols serves as an ideal guide to all scientists seeking to advance this important technology and provide answers to the enduring fundamental questions of biology.
The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
Only in recent times has the possibility of growing and implanting replacement teeth, made from one s own cells, moved into the realm of realistic possibilities; however, the molecular and cellular mechanisms of tooth development must be studied in a range of vertebrates, from zebrafish to mice, so that evolutionarily conserved network kernels, which will define the cellular states of generic vertebrate tooth development, can be recognized. In "Odontogenesis: Methods and Protocols," experts in the field examine techniques to approach this burgeoning field. This detailed volume includes chapters on the detection of tooth development gene expression, both at the RNA and protein level, current approaches to the manipulation of gene expression levels and subsequent analysis of tooth phenotypes, as well as chapters concerning current efforts to get living tooth implants working without waiting for a full understanding of the developmental pathways at the molecular level. Written in the highly successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Practical and easy to use, "Odontogenesis: Methods and Protocols" aims to help researchers move forward toward the ultimate goal of getting a bioengineered tooth into the patient s mouth.
During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists. Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles. This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems. Kenneth Lange is Professor of Biomathematics and Human Genetics at the UCLA School of Medicine. At various times during his career, he has held appointments at the University of New Hampshire, MIT, Harvard, and the University of Michigan. While at the University of Michigan, he was the Pharmacia & Upjohn Foundation Professor of Biostatistics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, and applied stochastic processes. Springer-Verlag published his book Numerical Analysis for Statisticians in 1999.
The aim of the book is to discuss the application of molecular pathology in cancer research, and its contribution in the classification of different tumors and identification of potential molecular targets, as well as how this knowledge may be translated into clinical practice, and the huge impact this field is likely to have in the next 5 to 10 years.
Forensic DNA profiling procedures are mainly based on high resolution and high throughput capillary electrophoresis separation and detection systems of PCR amplicons obtained from DNA genomic markers with different inheritance patterns. In DNA Electrophoresis Protocols for Forensic Genetics, expert researchers in the field detail many of the protocols and methods which are now commonly used to perform forensic DNA profiling. It includes protocols for profiling of autosomal STRs, Y-STRs, X-STRs, autosomal SNPs, INDELS, Y-SNPs, mtDNA-SNPs, and mtDNA hypervariable regions HV1 and HV2 . Protocols for molecular identification of non-human species and mRNA profiling for body fluid identification are also included. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.
The FactsBook Series has established itself as the best source of
easily accessible and accurate facts about protein groups. They use
an easy-to-follow format and are researched and compiled by experts
in the field.
The FactsBook series has established itself as the best source of
easily accessible and accurate facts about protein groups. Books in
the series use an easy-to-follow format and are meticulously
researched and compiled by experts in the field.
The rapid identification and characterization of genes of neurological relevance holds great potential for offering insight into the diagnosis, management, and und- standing of the pathophysiologic mechanisms of neurological diseases. This volume in the Methods in Molecular Biology (TM) series was conceived to highlight many of the contemporary methodological approaches utilized for the characterization of neu- logically relevant gene mutations and their protein products. Although an emphasis has been placed upon descriptions of methodologies with a defined clinical utility, it is hoped that Neurogenetics: Methods and Protocols will appeal not only to clinical laboratory diagnosticians, but also to clinicians, and to biomedical researchers with an interest in advances in disease diagnosis and the functional consequences of neu- logically relevant gene mutations. To meet this challenge, more than 60 authors graciously accepted my invitation to contribute to the 32 chapters of this book. Through their collective commitment and diligence, what has emerged is a comprehensive and timely treatise that covers many methodological aspects of mutation detection and screening, including disc- sions on quantitative PCR, trinucleotide repeat detection, sequence-based mutation detection, molecular detection of imprinted genes, fluorescence in situ hybridization (FISH), in vitro protein expression systems, and studies of protein expression and function. I would like to take this opportunity to formally thank my colleagues for their effort and dedication to this work.
It has become clear that tumors result from excessive cell proliferation and a corresponding reduction in cell death caused by the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emp- sis has shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and TSGs function in the same pathways, providing positive and negative growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Mu- tions in tumor suppressor genes have been identified in familial cancer syndromes, and the same genes in many cases have been found to be mutationally inactivated in sporadically occurring cancers. In their normal state, TSGs control cancer development and progression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pa- ways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access not only the powerful tools now available to discover these genes, but also their links to cell biology and growth control.
The tiny microRNAs (miRNAs) can have huge impacts on the regulation of a variety of genes and play crucial roles in the fundamental cellular processes. Recent miRNA studies change the landscape of cancer genetics by scrutinizing the alterations of genome-wide miRNA expressions in most common cancers and their regulatory functions during the development of cancer. The connections between miRNAs and cancer are widespread enough to warrant more comprehensive investigations in the systems biology perspective. In MicroRNA and Cancer: Methods and Protocols, internationally renowned experts provide the latest miRNA knowledge, the various techniques and methodologies currently available for cancer research application. Ranging from the fundamental concepts to practical applications, this book presents: * Overview of microRNA biogenesis, computational prediction of new miRNAs in the cancer genome, and miRNA-based therapeutic approaches for cancer treatment * Detailed experimental protocols in miRNA detection with novel and high-throughput technology, miRNA library cloning, miRNA epigenetic regulation, and miRNA pathway study * Stepwise computational and bioinformatic procedures for miRNA complex networks in cancer genomes with a variety of softwares and programs * Cross-cited notes on troubleshooting and avoiding known pitfalls Authoritative and cutting-edge, MicroRNA and Cancer: Methods and Protocols serves researchers with the basic principles of experimental and computational methods for microRNA study in cancer research and provides a firm grounding for those who wish to further develop their own applications and tailor them to their own specific research needs.
This volume details the most important methods used for studying prokaryotic non-coding RNAs and their protein accomplices. Chapters present methods in sections covering different aspects of the biology of that field: identification of ncRNAs, their differential expression, characterization of their structure, abundance, intracellular location and function, their interaction with RNA binding proteins, and plausible applications of ncRNA elements in the rapidly emerging field of synthetic biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Regulatory RNA: Methods and Protocols serves as a guidebook for scientists working toward the development of new tools and procedures for the vital field of sRNA biology.
The availability of powerful genome-wide association study technology, during the last five years, has shown that most of the "new" MS susceptibility loci are immune-response genes. It is clear that there is much novelty in the field of MS immunology, which has served as an impetus to invest in new therapies. Notably, most if not all of these are immunotherapies. Even the equally exciting field of cell-based therapies and neuro-regeneration may well rely on cells or growth factors that are no less immunomodulators than restorative of myelin and neural cell function. Multiple Sclerosis Immunology looks at MS immunology as the basis for the present and-even more-the future of treatments for this complex autoimmune condition. Both editors are immunologists, as well as clinical neurologists, and appreciate the importance of a sustained dialogue between basic and clinical scientists to ensure that "translation" is real and not just virtual.
This book will provide latest insights in the functional potentials of ribonucleic acids in medine and the use of Spiegelmer and Spiegelzyme systems. It will also deal with a new type of delivery systems for cellular targeting.
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological phenomena, such as development and homeostasis. The dysregulation of miRNA leads to disease progression, particularly of cancer. In Circulating MicroRNAs: Methods and Protocols, expert researchers in the field detail recent advances in the isolation, purification and analysis of circulating miRNAs from a variety of sources for research. The book is divided into three main topics. The first section involves the study of secretory miRNAs in cell-cell communication, and the second, the study of circulating miRNAs in body fluids. The last describes the novel techniques used to study circulating miRNAs. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Circulating MicroRNAs: Methods and Protocols seeks to aid scientists in dealing with the recent advances of RNAi technology from the bench to the bedside.
Genetic susceptibility refers to how variations in a person 's genes increase or decrease his or her susceptibility to environmental factors, such as chemicals, radiation and lifestyle (diet and smoking). This volume will explore the latest findings in the area of genetic susceptibility to gastrointestinal cancers, focusing on molecular epidemiology, DNA repair, and gene-environment interactions to identify factors that affect the incidence of GI cancers. Topics will include germline susceptibility, including Mendelian patterns of inheritance and gene-environment interactions that lead to cancer etiology.
Pharmacogenomics supports personalized medicine by translating genome-based knowledge into clinical practice, offering enhanced benefit for patients and health-care systems at large. Current routine practice for diagnosing and treating patients is conducted by correlating parameters such as age, gender and weight with risks and expected treatment outcomes. In the new era of personalized medicine the healthcare provider is equipped with improved ability to prevent, diagnose, treat and predict outcomes on the basis of complex information sources, including genetic and genomic data. Targeted therapy and reliable prediction of expected outcomes offer patients access to better healthcare management, by way of identifying the therapies effective for the relevant patient group, avoiding prescription of unnecessary treatment and reducing the likelihood of developing adverse drug reactions. |
![]() ![]() You may like...
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
Sustainable Automotive Technologies 2013…
Joerg Wellnitz, Aleksandar Subic, …
Hardcover
R6,143
Discovery Miles 61 430
Membrane Systems - For Bioartificial…
Loredana De Bartolo, Efrem Curcio, …
Hardcover
R4,337
Discovery Miles 43 370
Advanced Gear Engineering
Veniamin Goldfarb, Evgenii Trubachev, …
Hardcover
R7,178
Discovery Miles 71 780
Corporate Brand Design - Developing and…
Mohammad Mahdi Foroudi, Pantea Foroudi
Paperback
R1,389
Discovery Miles 13 890
|