![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Medical genetics
From the gene that causes people to age prematurely to the "bitter gene" that may spawn broccoli haters, this book explores a few of the more exotic locales on the human genome, highlighting some of the tragic and bizarre ways our bodies go wrong when genes fall prey to mutation and the curious ways in which genes have evolved for our survival. Lisa Seachrist Chiu offers here a smorgasbord of stories about rare and not so rare genetic quirks-the gene that makes some people smell like a fish, the Black Urine Gene, the Werewolf Gene, the Calico Cat Gene. We read about the Dracula Gene, a mutation in zebra fish that causes blood cells to explode on contact with light, and suites of genes that also influence behavior and physical characteristics. The Tangier Island Gene, first discovered after physicians discovered a boy with orange tonsils (scientists now realize that the child's odd condition comes from an inability to process cholesterol). And Wilson's Disease, a gene defect that fails to clear copper from the body, which can trigger schizophrenia and other neurological symptoms, and can be fatal if left untreated. On the plus side, we read about the Myostatin gene, a mutation which allows muscles to become much larger than usual and enhances strength-indeed, the mutations have produced beefier cows and at least one stronger human. And there is also the much-envied Cheeseburger Gene, which allows a lucky few to eat virtually anything they want and remain razor thin. While fascinating us with stories of genetic peculiarities, Chiu also manages to explain much cutting-edge research in modern genetics, resulting in a book that is both informative and entertaining. It is a must read for everyone who loves popular science or is curious about the human body.
Translational Systems Medicine and Oral Disease bridges the gap between discovery science and clinical oral medicine, providing opportunities for both the scientific and clinical communities to understand how to apply recent findings in cell biology, genomic profiling, and systems medicine to favorably impact the diagnosis, treatment and management of oral diseases. Fully illustrated chapters from leading international contributors explore clinical applications of genomics, proteomics, metabolomics, microbiomics and epigenetics, as well as analytic methods and functional omics in oral medicine. Disease specific chapters detail systems approaches to periodontal disease, salivary gland diseases, oral cancer, bone disease, and autoimmune disease, among others. In addition, the book emphasizes biological synergisms across disciplines and their translational impact for clinicians, researchers and students in the fields of dentistry, dermatology, gastroenterology, otolaryngology, oncology and primary care.
This thesis demonstrates a technology that enables pipetting-free high-throughput screening (HTS) on a miniaturized platform, eliminating the need for thousands of one-by-one pipetting and conventional liquid handling systems. This platform enhances accessibility to HTS and enables HTS to be used in small-to-medium scale laboratories. In addition, it allows large-scale combinatorial screening with a small number of valuable cells, such as patients' primary cancer cells. This technique will have a high impact for widespread use of HTS in the era of personalized medicine. In this thesis, the author firstly describes the need and concept of 'partipetting' for pipetting-free HTS platform. It is realized by the one-step pipetting and self-assembly of encoded drug-laden microparticles (DLPs) on the microwells. Next, the technical implementations required for the platform demonstration are described. It includes preparation of encoded DLPs, plastic chip fabrication, and realization of automated system. Lastly, screening of sequential drug combinations using this platform is demonstrated. This shows the potential of the proposed technology for various applications.
Transgenerational Epigenetics, Second Edition, offers the only up-to-date, comprehensive analysis of the inheritance of epigenetic phenomena between generations with an emphasis on human disease relevance, drug discovery, and next steps in clinical translation. International experts discuss mechanisms of epigenetic inheritance, its expression in animal and plant models, and how human ailments, such as metabolic disorders and cardiovascular disease are influenced by transgenerational epigenetic inheritance. Where evidence is sufficient, epigenetic clinical interventions are proposed that may help prevent or reduce the severity of disease before offspring are born. This edition has been thoroughly revised in each disease area, featuring newly researched actors in epigenetic regulation, including long noncoding RNA in addition to histone modifications and DNA methylation. Therapeutic pathways in treating cancer and extending human longevity are also considered, as are current debates and future directions for research.
Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies. This comprehensive, yet practical, resource emphasizes theory and research fundamentals relating to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine. Updated sections in this release cover the genetics of cardiovascular, respiratory and gastrointestinal disorders, with an emphasis on genetic determinants and new pathways for diagnosis, prevention and disease management. In addition, genetic researchers, students and health professionals will find new and fully revised chapters on the molecular genetics of congenital heart defects, inherited cardiomyopathies, hypertension, cystic fibrosis, asthma, hereditary pulmonary emphysema, inflammatory bowel disease, and bile pigment metabolism disorders among other conditions.
Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans. At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor's studies using stearoyl-CoA desaturase knockout (SCD1-/-) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1. This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more.
miRNAs are a class of endogenous, small non-protein coding RNA molecules (~ 22 nucleotides) which are novel post-transcriptional regulators of gene expression. Since we have hundreds of miRNAs, the major challenge is now to understand their specific biological function. In fact the experimental evidence suggests that signaling pathways could be ideal candidates for miRNA-mediated regulation. Several studies suggest that miRNAs affect the responsiveness of cells to signaling molecules such as WNT, Notch, TGF- and EGFR. Altered expression of particular miRNAs has been implicated in the onset and development of cancer and could be used as potential biomarkers for the disease. Recently, many studies have found miRNAs have crucial regulatory roles in Cancer stem cells (CSCs) a kind of tumor initiating cells (TICs) and dormancy. Findings also suggest that DNA methylation may be important in regulating the expression of many miRNAs in several cancer initiating cells. Several miRNAs are known to either upregulated or downregulated in CSCs when compared to non-cancerous cells from the same tissues. CSCs are a small subpopulation of cells identified in a variety of tumors and involve in self-renewal, differentiation, chemoresistance and tumorigenesis. The volume will give a comprehensive account of important advancements in the area of miRNAs and cancer.
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With detailed coverage in contributions from over 250 of the world's most trusted authorities in medical genetics and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. Clinical Principles and Applications thoroughly addresses general methods and approaches to genetic counseling, genetic diagnostics, treatment pathways, and drug discovery. Additionally, new and updated chapters explore the clinical implementation of genomic technologies, analytics, and therapeutics, with special attention paid to developing technologies, common challenges, patient care, and ethical and legal aspects. With regular advances in genomic technologies propelling precision medicine into the clinic, the seventh edition of Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for the health professionals and researchers.
The best-selling author of Leonardo da Vinci and Steve Jobs returns. In 2012, Nobel Prize winning scientist Jennifer Doudna hit upon an invention that will transform the future of the human race: an easy-to-use tool that can edit DNA. Known as CRISPR, it opened a brave new world of medical miracles and moral questions. It has already been deployed to cure deadly diseases, fight the coronavirus pandemic of 2020, and make inheritable changes in the genes of babies. But what does that mean for humanity? Should we be hacking our own DNA to make us less susceptible to disease? Should we democratise the technology that would allow parents to enhance their kids? After discovering this CRISPR, Doudna is now wrestling these even bigger issues. THE CODE BREAKERS is an examination of how life as we know it is about to change - and a brilliant portrayal of the woman leading the way.
This detailed volume explores the notable progress in the field of zinc finger proteins (ZFP) study through widely used methods and protocols involving their biological functions and applications. Beginning with a section on the basic biology of ZFPs and design and applications of custom ZFPs, the book continues by covering methods for the evaluation and prevention of ZFN-mediated cytotoxicity as well as a collection of the representative methods of ZFN delivery. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Zinc Finger Proteins: Methods and Protocols aims to prompt both the understanding of ZFP biology and the development of next-generation ZFP therapeutics.
Androgens are critical regulators of prostate differentiation and function, as well as prostate cancer growth and survival. Therefore, androgen ablation is the preferred systemic treatment for disseminated prostate cancer. Androgen action is exerted in target tissues via binding the androgen receptor (AR), a nuclear receptor transcription factor. Historically, the gene expression program mediated by the AR has been poorly understood. However, recent gene expression profiling and more traditional single-gene characterization studies have revealed many androgen-regulated genes that are important mediators of androgen action in both normal and malignant prostate tissue. This book will focus on the androgen-regulated gene expression program, and examine how recently identified androgen-regulated genes are likely to contribute to the development and progression of prostate cancer. Recent studies that have attempted to unravel how these genes are deregulated in androgen depletion independent prostate cancer will be included
This book looks at where stem cell technology is presently and how it is instrumental in advancing the field of disease modeling and cell transplantation. By focusing on major human disorders such as Alzheimer's disease, cancer, and heart disorders, the book summarizes the major findings in the field of human stem cells and dissect the current limitations on our understanding of stem cells biology. The chapters focus on the genetics, genomics, epigenetics and physiology of stem cells models, together with technological advances on molecular biology such as CRISPR/Cas9 or epigenetic editing, that will be instrumental in the future of human disease modeling and treatment. In base of the limitations of current disease models and in front of the unmet necessity of finding therapeutical interventions for human disorders, the availability of stem cell technology has opened new doors for several fields. The unlimited self-renewal capacity and more extensive differentiation potential of stem cells offers a theoretically inexhaustible and replenishable source of any cell subtype. Since Professor Shinya Yamanaka described it, 10 years ago in his seminal paper, that somatic cells could be reprogrammed to inducible stem cells (iPSC) just by expressing four transcription factors, the field of has exploded, especially its applications in biomedical research.
This second edition volume expands on the first edition with more detailed methodologies on prenatal testing and diagnosis, and also covers next-generation sequencing techniques. The chapters in this book are divided into three sections: preimplantation genetic testing, traditional prenatal testing, and non-invasive prenatal testing. This book covers topics such as molecular testing for preimplantation genetic diagnosis of single gene disorders; DNA extraction from various types of prenatal specimens; prenatal diagnosis of cystic fibrosis and Tay-Sachs disease; chromosomal SNP microarrays; and isolation of cell-free DNA from maternal plasma. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and thorough, Prenatal Diagnosis, Second Edition is a valuable resource for any researcher interested in reproducing these techniques in their clinical laboratories.
Originally thought to be available only to the world's wealthiest nations, genomic medicine has developed into a broad range of clinical methods and technologies whose concrete applications are also revolutionizing health systems in many of the world's resource-limited nations. Genomic Medicine in Emerging Economies: Genomics for Every Nation provides in-depth analysis and key examples of the implementation of medical genomics in low-income nations across the globe, demonstrating how this advancing medical science has already transformed health systems and led to improved patient care in Indonesian, Chilean, Malaysian, Argentinian, Chinese, Sri Lankan, and Colombian populations among others. In addition to defining tools, diagnostics, and treatment pathways at the population-wide level for medical geneticists, genomic researchers, and public health workers to apply in their own work, this book offers an essential, case-study based approach needed to understand how genomic medicine can be used to improve disease-management in a diverse range of economic and social contexts.
While technological advancements have been critical in allowing researchers to obtain more and better quality data about cellular processes and signals, the design and practical application of computational models of genomic regulation continues to be a challenge. Emerging Research in the Analysis and Modeling of Gene Regulatory Networks presents a compilation of recent and emerging research topics addressing the design and use of technology in the study and simulation of genomic regulation. Exploring both theoretical and practical topics, this publication is an essential reference source for students, professionals, and researchers working in the fields of genomics, molecular biology, bioinformatics, and drug development.
This volume focuses on mitochondrial RNA metabolism, emphasizing recent discoveries and technological advances in this fast moving area that increase our understanding of mitochondrial gene function. Topics addressed include the interplay of mitochondria with the nucleus and cytosol, structure-function connections, and relevance to human disease. Mitochondria are the powerhouses of the cell, and a great deal is known about mitochondrial energy metabolism. Less well known is the plethora of amazing mechanisms that have evolved to control expression of mitochondrial genomes. Several RNA processes and machineries in protozoa, plants, flies and humans are discussed, including: transcription and RNA polymerase mechanism; tRNA processing of 5' and 3' ends; mRNA maturation by nucleotide insertion/deletion editing and by RNA splicing; mRNA stability; and RNA import. Specialized factors and ribonucleoproteins (RNPs) examined include pentatricopeptide repeat (PPR) proteins, RNase P, polymerases, helicases, nucleases, editing and repair enzymes. Remarkable features of these processes and factors are either not found outside mitochondria, differ substantially among eukaryotic lineages, or are unique in biology.
The Epigenetics of Autoimmunity covers a topic directly related to translational epigenetics. Via epigenetic mechanisms, a number of internal and external environmental risk factors, including smoking, nutrition, viral infection and the exposure to chemicals, could exert their influence on the pathogenesis of autoimmune diseases. Such factors could impact the epigenetic mechanisms, which, in turn, build relationship with the regulation of gene expression, and eventually triggering immunologic events that result in instability of immune system. Since epigenetic aberrations are known to play a key role in a long list of human diseases, the translational significance of autoimmunity epigenetics is very high. To bridge the gap between environmental and genetic factors, over the past few years, great progress has been made in identifying detailed epigenetic mechanisms for autoimmune diseases. Furthermore, with rapid advances in technological development, high-throughput screening approaches and other novel technologies support the systematic investigations and facilitate the epigenetic identification. This book covers autoimmunity epigenetics from a disease-oriented perspective and several chapters are presented that provide advances in wide-spread disorders or diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1DM), systemic sclerosis (SSc), primary Sjoegren's syndrome (pSS) and autoimmune thyroid diseases (AITDs). These emerging epigenetic studies provide new insights into autoimmune diseases, raising great expectations among researchers and clinicians. This seminal book on this topic comprehensively covers the most recent advances in this exciting and rapidly developing new science. They might reveal not only new clinical biomarkers for diagnosis and disease progression, but also novel targets for potential epigenetic therapeutic treatment.
Human Reproductive and Prenatal Genetics presents the latest material from a detailed molecular, cellular and translational perspective. Considering its timeliness and potential international impact, this all-inclusive and authoritative work is ideal for researchers, students, and clinicians worldwide. Currently, there are no comprehensive books covering the field of human reproductive and prenatal genetics. As such, this book aims to be among the largest and most useful references available. Named a Highly Commended book in the Basic and Clinical Sciences by the British Medical Association. |
![]() ![]() You may like...
The Dependent Economy - Lesotho And The…
Lennart Petersson, Mats Ove Lundahl
Hardcover
R2,693
Discovery Miles 26 930
Food Insecurity, Vulnerability and Human…
Basudeb Guha-Khasnobis, Shabd S. Acharya, …
Hardcover
R2,689
Discovery Miles 26 890
NAFTA - Past, Present and Future
P. Coffey, J. Colin Dodds, …
Hardcover
R2,781
Discovery Miles 27 810
Documents in International Economic Law…
Christian J. Tams, Christian Tietje
Hardcover
R4,986
Discovery Miles 49 860
|