![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Medical genetics
This volume provides a comprehensive overview of the experimental and computational methodologies used to study the function of long non-coding RNA (ncRNAs) expressed from enhancers. Chapter detail both wet-lab and dry-lab techniques and annotating long ncRNAs and exploring transcription by assessing where transcription starts and generally how it occurs.Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Enhancer RNAs: Methods and Protocols aims to ensure successful results in this rapidly developing field.
Should parents aim to make their children as normal as possible to increase their chances to "fit in"? Are neurological and mental health conditions a part of children's identity and if so, should parents aim to remove or treat these? Should they aim to instill self-control in their children? Should prospective parents take steps to insure that, of all the children they could have, they choose the ones with the best likely start in life? This volume explores all of these questions and more. Against the background of recent findings and expected advances in neuroscience and genetics, the extent and limits of parental responsibility are increasingly unclear. Awareness of the effects of parental choices on children's wellbeing, as well as evolving norms about the moral status of children, have further increased expectations from (prospective) parents to take up and act on their changing responsibilities. The contributors discuss conceptual issues such as the meaning and sources of moral responsibility, normality, treatment, and identity. They also explore more practical issues such as how responsibility for children is practiced in Yoruba culture in Nigeria or how parents and health professionals in Belgium perceive the dilemmas generated by prenatal diagnosis.
This book deals with the various aspects of gene therapy from the point of view of leading experts in their respective fields. It provides not only an overview to the various topics of gene therapy, but also discusses current problems and potential solutions. The various gene delivery vehicles and specific problems encountered in the individual target diseases (genetic and nongenetic diseases, as well as AIDS and cancer) are discussed in depth. This book should be useful reading for students, scientists and physicians interested in molecular medicine.
Chemical genomics technology has been steadily improving, delivering new biological probes and drugs, and the explicit use of the term 'chemical proteomics' has increased with it, as proteins have always been at the heart of this technology. In "Chemical Genomics and Proteomics: Reviews and Protocols," experts in the field present updated reviews of the chemistry of small molecules and their interaction with protein targets as well as detailed protocols that cover different types of ligands, carbohydrates, and lipids. For example, the generation of their protein targets and methods for measuring their interactions is covered. Written in the highly successful "Methods in Molecular Biology " series format, methodology chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and up to date, "Chemical Genomics and Proteomics: Reviews and Protocols" aims to provide inspiration to those who wish to use chemical genomics and proteomics in their work and develop this young field into full maturity through the incorporation of the new biological and chemical technologies beginning to emerge here."
Introduction.-Probing Astrocyte Function in Fragile X Syndrome.- Neural Stem Cells.- Fragile X Mental Retardation Protein (FMRP) and the Spinal Sensory System. The Role of the Postsynaptic Density in the Pathology of the Fragile X Syndrome.- Behavior in a Drosophila model of Fragile X.- Molecular and Genetic Analysis of the Drosophila Model of Fragile X Syndrome.- Fragile X Mental Retardation Protein and Stem Cells.- Manipulating the Fragile X Mental Retardation Proteins in the Frog.- Exploring the Zebra finch Taeniopygia gutta as a Novel Animal Model for the Speech-language Deficit of Fragile X Syndrome.- Neuroendocrine Alterations in the Fragile X Mouse.- Taking STEPs forward to understanding Fragile X Syndrome.- Fmr-1 as an Offspring Genetic and a Maternal Environmental Factor in Neurodevelopmental Disease.- Mouse Models of the Fragile X Premutation and the Fragile X Associated Tremor/Ataxia Syndrome.- Clinical Aspects of the Fragile X Syndrome.- Fragile X Syndrome: A Psychiatric Perspective.- Fragile X Syndrome and Targeted Treatment Trials.- The Fragile X-associate Tremor Ataxia Syndrome.- Vignettes: Models in Absentia."
The one and only comprehensive reference for all aspects of human genetics Unique in breadth and authority The fourth, completely revised edition of this classical reference and textbook presents a cohesive and up-to-date exposition of the concepts, results, and problems underlying theory and practice in human and medical genetics. In the 10 years since the appearance of the third edition, many new insights have emerged for understanding the genetic basis of development and function in human health and disease. Human genetics, with its emphasis on molecular concepts and techniques, has become a key discipline in medicine and the biomedical sciences. The fourth edition has been extensively expanded by new chapters on hot topics such as epigenetics, pharmacogenetics, gene therapy, cloning and genetic epidemiology. In addition a section giving an overview on the main model organisms (mouse, dog, worm, fly, yeast) used in human genetics research has been introduced. This book will be of interest to human and medical geneticists, scientists in all biomedical sciences, physicians and epidemiologists, as well as to graduate and postgraduate students who desire to learn the fundamentals of this fascinating field
In the past four years, many genetic loci have been implicated for BMI from the outcomes of genome-wide association studies (GWAS), primarily in adults. Insulin-induced gene 2 (INSIG2) was the first locus to be reported by this method to have a role in obesity but replication attempts have yielded inconsistent outcomes. The identification of the second locus, the fat mass- and obesity-associated gene (FTO), h has been more robustly observed by others. Studies from both FTO knock out and FTO overexpression mouse model support the fact that FTO is directly involved in the regulation of energy intake and metabolism in mice, where the lack of FTO expression leads to leanness while enhanced expression of FTO leads to obesity. Along with numerous other studies, a number of genetic variants have been established robustly in the context of obesity, giving us fresh insights into the pathogenesis of the disease. This book will give a comprehensive overview of efforts aimed at uncovering genetic variants associated with obesity, which have been particularly successful in the past 5 years with the advent of genome-wide association studies (GWAS). This book will cover this state of the art technology and its application to obesity in great detail. Topics covered will include genetics of childhood obesity, genetics of syndromic obesity, copy number variants and extreme obesity, co-morbidities of obesity genetics, and functional follow-up of genetic variants. "
In the post-genomic era, in vitro mutagenesis has emerged as a critically important tool for establishing the functions of components of the proteome. The third edition of In Vitro Mutagenesis Protocols represents a practical toolbox containing protocols vital to advancing our understanding of the connection between nucleotide sequence and sequence function. Fully updated from the previous editions, this volume contains a variety of specialty tools successfully employed to unravel the intricacies of protein-protein interaction, protein structure-function, protein regulation of biological processes, and protein activity, as well as a novel section on mutagenesis methods for unique microbes as a guide to the generalization of mutagenesis strategies for a host of microbial systems. Written in the highly successful Methods in Molecular Biology series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, In Vitro Mutagenesis Protocols, Third Edition offers today's researchers a valuable compendium of reliable and powerful techniques with which to illuminate the proteome and its rich web of biological implications.
Alternative Sources of Adult Stem Cells: Human Amniotic
Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer,
and A. Peterbauer-Scherb;
The latest in the series of literature reviews designed to keep specialists in genetics and related fields abreast of current developments. The five articles cover the lethal osteochondrodysplasias, mutations in type I procollagen genes that cause osteogenesis imperfecta, structural defects in inher
This book is a broadly historical account of a remarkable and very exciting scientific story-the search for the number of human chromosomes. It covers the processes and people, culminating in the realization that discovering the number of human chromosomes brought as much benefit as unraveling the genetic code itself. With the exception of red blood cells, which have no nucleus and therefore no DNA, and sex cells, humans have 46 chromosomes in every single cell. Not only do chromosomes carry all of the genes that code our inheritance, they also carry them in a specific order. It is essential that the number and structure of chromosomes remains intact, in order to pass on the correct amount of DNA to succeeding generations and for the cells to survive. Knowing the number of human chromosomes has provided a vital diagnostic tool in the prenatal diagnosis of genetic disorders, and the search for this number and developing an understanding of what it means are the focus of this book.
Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations, from the construction of gene maps and models of chromosome organization, to the inves tigation of gene function and dysfunction. The study of chromosomes has developed in parallel with other aspects of molecular genetics, beginning with the first preparations of chromosomes from animal cells, through the development of banding techniques, which permitted the unequivocal identification of each chromosome in a karyotype, to the present analytical methods of molecular cytogenetics. Although some of these techniques have been in use for many years, and can be learned relatively easily, most published scientific reports-as a result of pressure on space from editors, and the response to that pressure by authors-contain little in the way of technical detail, and thus are rarely adequate for a researcher hoping to find all the necessary information to embark on a method from scratch. A new user needs not only a detailed description of the methods, but also some help with problem solving and sorting out the difficulties en countered in handling any biological system. This was the require ment to which the series Methods in Molecular Biology is addressed, and Chromosome Analysis Protocols forms a part of this series.
This volume provides protocols and procedures for determining and modeling RNA structure. Chapters guide the reader through protocols for RNA secondary structure prediction, single sequence modeling, Crumple, RNAstructure to model conserved secondary structures with multiple homologs, the prediction of bimolecular secondary structures with RNAstructure, STarMir, protocols for structure mapping, mapping data to constrain or restrain RNA secondary structure prediction with RNAstructure, unassigned NMR resonances, modeling protocols for Rosetta FARFAR, RNAComposer , ModeRNA, and MC-Fold. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and Practical, RNA Structure Determination: Methods and Protocols aims to ensure successful results in the further study of this vital field.
RNA Interference: Challenges and Therapeutic Opportunities provides readers with recent advances in siRNA design, delivery, targeting and methods to minimize siRNA's unwanted effects. Preclinical and clinical use of synthetic siRNAs, the roles of miRNAs in cancer and the promise of extracellular miRNAs for diagnosis are also covered in this meticulous collection, along with novel methods for identifying endogenous siRNAs and the annotation of small RNA transcriptomes. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and key implementation advice that ensures successful results in the laboratory. Comprehensive and cutting-edge, RNA Interference: Challenges and Therapeutic Opportunities will aid researchers, clinicians, teachers and biotechnologists interested in the power of RNA-based therapies.
In the coming decade, the focus of medicine will shift from a disease-oriented approach, where the physician prescribes according to the disease the patient has, to a personalized approach, in which the physician first considers the patient's individual biochemistry before prescribing a treatment. Personalized medicine has the potential to improve efficacy and safety in virtually all fields of medicine. Unfortunately, few physicians feel confident in their ability to apply the principles of genetics and genomics upon which personalized medicine is based to their practice. This book is intended to help the practicing physician understand and apply the principles of genetic and genomic medicine, regardless of his/her level of background in the field. It provides a thorough foundation/review of classical genetic principles, with an emphasis on how these principles apply to personalized medicine and common complex diseases. In addition, it provides a wide-ranging review of the inroads that personalized medicine has made into several fields, including cancer, psychiatric disorders, cardiovascular disease, substance abuse, Alzheimer disease, respiratory diseases, type 2 diabetes and macular degeneration. Most importantly, this book is intended to enable the practicing physician, physician assistants and their entire healthcare team to anticipate the developments that will emerge in the near future, and stay current with the field as it expands.
Recent work has revealed that stabilizing G-quadruplexes in telomeric DNA inhibits telomerase activity, providing impetus for the development of G-quartet-interacting drugs, while G-quartet-containing oligonucleotides have been recognized as a potent class of aptamers effective against STAT3 and other transcription factors implicated in oncogenesis, proving these guanine-quartets to be a vital and rich area for future study. In "G-Quadruplex DNA: Methods and Protocols", experts in the field present a collection of detailed techniques for studying G-quartet formation, dynamics, and molecular recognition. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, "G-Quadruplex DNA: Methods and Protocols "promises to be a useful resource for those familiar with G-quartets as well as an easy entry point for those researchers from diverse fields who are just developing an interest in the exciting implications of G-quadruplex DNA.
The combination of molecular biology, engineering and bioinformatics has revolutionized our understanding of cancer revealing a tight correlation of the molecular characteristics of the primary tumor in terms of gene expression, structural alterations of the genome, epigenetics and mutations with its propensity to metastasize and to respond to therapy. It is not just one or a few genes, it is the complex alteration of the genome that determines cancer development and progression. Future management of cancer patients will therefore rely on thorough molecular analyses of each single case. Through this book, students, researchers and oncologists will obtain a comprehensive picture of what the first ten years of cancer genomics have revealed. Experts in the field describe, cancer by cancer, the progress made and its implications for diagnosis, prognosis and treatment of cancer. The deep impact on the clinics and the challenge for future translational research become evident.
A grand summary and synthesis of the tremendous amount of data now available in the post genomic era on the structural features, architecture, and evolution of the human genome. The authors demonstrate how such architectural features may be important to both evolution and to explaining the susceptibility to those DNA rearrangements associated with disease. Technologies to assay for such structural variation of the human genome and to model genomic disorders in mice are also presented. Two appendices detail the genomic disorders, providing genomic features at the locus undergoing rearrangement, their clinical features, and frequency of detection.
Analysis of Genetic Association Studies is both a graduate level textbook in statistical genetics and genetic epidemiology, and a reference book for the analysis of genetic association studies. Students, researchers, and professionals will find the topics introduced in Analysis of Genetic Association Studies particularly relevant. The book is applicable to the study of statistics, biostatistics, genetics and genetic epidemiology. In addition to providing derivations, the book uses real examples and simulations to illustrate step-by-step applications. Introductory chapters on probability and genetic epidemiology terminology provide the reader with necessary background knowledge. The organization of this work allows for both casual reference and close study.
The effort to sequence the human genome is now moving toward a c- clusion. As all of the protein coding sequences are described, an increasing emphasis will be placed on understanding gene function and regulation. One important aspect of this analysis is the study of how transcription factors re- late transcriptional initiation by RNA polymerase II, which is responsible for transcribing nuclear genes encoding messenger RNAs. The initiation of Class II transcription is dependent upon transcription factors binding to DNA e- ments that include the core or basal promoter elements, proximal promoter elements, and distal enhancer elements. General initiation factors are involved in positioning RNA polymerase II on the core promoter, but the complex - teraction of these proteins and transcriptional activators binding to DNA e- ments outside the core promoter regulate the rate of transcriptional initiation. This initiation process appears to be a crucial step in the modulation of mRNA levels in response to developmental and environmental signals. Transcription Factor Protocols provides step-by-step procedures for key techniques that have been developed to study DNA sequences and the protein factors that regulate the transcription of protein encoding genes. This volume is aimed at providing researchers in the field with the well-detailed protocols that have been the hallmark of previous volumes of the Methods in Molecular (TM) Biology series.
Since the publication of the popular first edition, the explosion of DNA sequence information, the access to bioinformatics and mutation databases coupled with the ability to readily detect and confirm mutations has cemented the role of molecular diagnostics in medicine and, in particular, mutation detection by the polymerase chain reaction (PCR). In PCR Mutation Detection Protocols, Second Edition, expert researchers bring the subject up-to-date with key protocols involving the PCR and its many various incarnations such as SSCP, CSGE, and dHPLC. The volume also addresses key areas such as Southern blotting, accurate diagnostics with high throughput, as well as microarray systems. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes which provide the often hard to find information that may mean the difference between the success and failure of the method. Authoritative and cutting-edge, PCR Mutation Detection Protocols, Second Edition aims to stimulate postgraduate scientists, researchers, and clinicians already engaged in the area and to provide an important first step for those new to this practice wanting to adopt the powerful and essential technique in their own laboratories.
Part I The Nano-Scale Biological Systems in Nature; Molecular bio-motors in living cells - by T. Nishizaka; The form designed by viral genome - by K. Onodera; Part II Detection and Characterization Technology; Atomic force microscopy applied to nano-mechanics of the cell - by A. Ikai; Design, synthesis and biological application of fluorescent sensor molecules for cellular imaging - by K. Kikuchi; Dynamic visualization of cellular signaling - by Q. Ni and J. Zhang; Part III Fabrication Technology; Surface acoustic wave atomizer and electrostatic deposition - by Y. Yamagata; Electrospray deposition of biomolecules by V.N. Morozov; Part IV Processing Technology; Droplet handling - by T.Torii; Integrated microfluidic systems - by S. Kaneda and T. Fujii; Part V Applications; A novel non-viral gene delivery system: Multifunctional envelope-type nano device - by H. Hatakeyama, H. Akita, K. Kogure, and H. Harashima; Biosensors - by M. Saito, H.M. Hiep, N. Nagatani, and E.Tamiya; Micro bioreactors - by Sato and T. Kitamori
In recent years much enthusiasm and energy has been directed toward the development of human gene therapies, especially for inherited conditions and cancers. However, current gene transfer technology is limited in its transduction efficiency and ability to permanently and safely correct genomic defects. Thus the promise of gene therapy for these conditions is as yet unrealized. The progression of gene transfer technology will eventually surmount these limitations. Gene Therapy for Acute and Acquired Diseases includes selected examples of ongoing studies in molecular genetics that have the potential to evolve into human therapies for acute illnesses. These chapters are intended to highlight lesser known applications of gene therapy for acquired disorders. It is expected that human gene therapy trials for these conditions will be forthcoming in the near future, leading to previously unimaginable therapies. Thus, this first-ever book about gene therapy for acute and acquired diseases is intended to serve as a glimpse into the future.
This volume details protocols that can be used for generation of knockout animals. Chapters guide the reader through basic protocols for three genome editing technologies, target design tools, and specific protocols for each animal. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Genome Editing in Animals: Methods and Protocols aims to ensure successful results in the further study of this vital field. |
![]() ![]() You may like...
|