![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book introduces state-of-the-art experimental and numerical methods and examples for evaluating the drilling performance of engineering and biological materials, particularly in thermal aspects. The authors use a common pathway to present the technological and analytical methods for both industry (metal) drilling and orthopaedic surgery (bone) drilling research, making this book a resource for both industrial and clinical readers who wish to understand the evolution of technologies, techniques and challenges in drilling. The authors also focus on advanced engineering materials, such as titanium alloys and high-strength cast irons, which have broad applications in the automotive, aerospace, medical device and sports industries. This book is a must-read for a broad audience, including engineering students in upper-level undergraduate and graduate courses that involve machining processes; for surgery residents, fellows, and practicing surgeons; and for engineers in the medical device industry who develop new bone cutting tools. Bridges the knowledge on drilling from the manufacturing industry to healthcare; Covers the experimental and modeling aspects of drilling thermal analysis; Includes experimental studies that contain parameters and data that emulate practical production and clinical drilling.
Currently, most of the major commercial metal additive manufacturing (MAM) techniques rely on liquid phase processing. The liquid to solid phase transformations in these techniques results in microstructural issues and defects which in turn tantamount to inferior properties of fabricated build. Friction based additive manufacturing technologies are solid state processing techniques which work on the principles of friction based joining processes and layer by layer additive manufacturing. This book primarily addresses the basic understanding of seven friction based additive manufacturing techniques. These techniques include additive manufacturing methods based on rotary friction welding, linear friction welding, friction deposition, friction surfacing, friction stir additive manufacturing, friction assisted seam welding and additive friction stir. The principle of operations, benefits, limitations and recent developments of each technique has been described. It covers potentional and probable applications of each technique through review of various experimental studies. Features Targets friction based solid state additive manufacturing of metallic materials Describes principle of operation of seven friction based additive manufacturing techniques Reviews latest trends of these processes via experimental studies Describes benefits and limitations of each technique Covers current and probable applications of these techniques
This book introduces the latest results in research and practice of industrial solid waste recycling in China's western regions, where more than 50% of the waste in the whole country was produced. With rapid development in recent years, the massive industrial solid waste has become a serious problem in China. This book summarizes information and results of several National Research Programs of China concerning the typical solid wastes of the metallurgical and energy industry in western China, such as magnesium slag, manganese slag, acid sludge of lead and zinc smelting, fly ash, steel slag and carbide slag. It will be highly beneficial to scholars and engineers of environmental science and engineering.
The IEEE Press is pleased to reissue this essential book for understanding the basis of modern magnetic materials. Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, and antiferromagnetism are covered in an integrated manner -- unifying subject matter from physics, chemistry, metallurgy, and engineering. Magnetic phenomena are discussed both from an experimental and theoretical point of view. The underlying physical principles are presented first, followed by macroscopic or microscopic theories. Although quantum mechanical theories are given, a phenomenological approach is emphasized. More than half the book is devoted to a discussion of strongly coupled dipole systems, where the molecular field theory is emphasized. "The Physical Principles of Magnetism" is a classic "must read" for anyone working in the magnetics, electromagnetics, computing, and communications fields.
This book introduces the materials and traditional processes involved in the manufacturing industry. It discusses the properties and application of different engineering materials as well as the performance of failure tests. The book lists both destructible and non-destructible processes in detail. The design associated with each manufacturing processes, such Casting, Forming, Welding and Machining, are also covered.
This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project "Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials". Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.
This book presents the fundamentals of iron and steel making, including the physical chemistry, thermodynamics and key concepts, while also discussing associated problems and solutions. It guides the reader through the production process from start to finish, covers the raw materials, and addresses the types of processes and reactions involved in both conventional and alternative methods. Though primarily intended as a textbook for students of metallurgical engineering, the book will also prove a useful reference for professionals and researchers working in this area.
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Spawned by growing interest in ultrasonic technology and new developments in ultrasonic melt processing, the Second Edition of Ultrasonic Treatment of Light Alloy Melts discusses use of ultrasonic melt treatment in direct-chill casting, shape casting, rapid solidification, zone refining, and more, exploring the effects of power ultrasound on melt degassing, filtration, and refinement in aluminum and magnesium alloys. The fully revised and restructured Second Edition: Contains new, in-depth coverage of composite and nanocomposite materials Provides a historical review of the last century of ultrasonic applications to metallurgy Emphasizes the fundamentals, mechanisms, and applications of ultrasonic melt processing in different light-metal technologies Features new chapters on ultrasonic grain refinement, refinement of primary solid phases, and semi-solid processing of billets with nondendritic structure Includes significant updates reflecting results obtained over the past two decades on different scales, from laboratory to full-scale industrial implementations Complete with many new figures and examples, Ultrasonic Treatment of Light Alloy Melts, Second Edition delivers a comprehensive treatise on ultrasonic melt processing and cavitation, presenting essential guidelines for practical use and further development of the technology.
This book summarizes the results of experimental work on the development of technologies for the manufacture of sour service line pipe steels. It presents the latest theories on the mechanisms of cracking and factors affecting fracture resistance in H2S-containing media of low-alloy pipe steels. The authors propose methods for improving the quality of continuously cast slabs and show the effect of the chemical composition on the microstructure and properties of rolled plates for pipes. Considerable attention is paid to the metallurgical aspects of microstructure formation and its mechanical properties, as well as the enhancement and cracking resistance of sour service sheets under thermomechanical rolling with accelerated cooling. In brief, the book presents a cutting-edge overview of sour service sheet and pipe production.
Valuable information on corrosion fundamentals and applications of aluminum and magnesium Aluminum and magnesium alloys are receiving increased attention due to their light weight, abundance, and resistance to corrosion. In particular, when used in automobile manufacturing, these alloys promise reduced car weights, lower fuel consumption, and resulting environmental benefits. Meeting the need for a single source on this subject, Corrosion Resistance of Aluminum and Magnesium Alloys gives scientists, engineers, and students a one-stop reference for understanding both the corrosion fundamentals and applications relevant to these important light metals. Written by a world leader in the field, the text considers corrosion phenomena for the two metals in a systematic and parallel fashion. The coverage includes: The essentials of corrosion for aqueous, high temperature corrosion, and active-passive behavior of aluminum and magnesium alloys The performance and corrosion forms of aluminum alloys The performance and corrosion forms of magnesium alloys Corrosion prevention methods such as coatings for aluminum and magnesium Electrochemical methods of corrosion investigation and their application to aluminum and magnesium alloys Offering case studies and detailed references, Corrosion Resistance of Aluminum and Magnesium Alloys provides an essential, up-to-date resource for graduate-level study, as well as a working reference for professionals using aluminum, magnesium, and their alloys.
This book discusses the core principles and practical applications of a brand new machine category: liquid-metal soft machines and motors. After a brief introduction on the conventional soft robot and its allied materials, it presents the new conceptual liquid-metal machine, which revolutionizes existing rigid robots, both large and small. It outlines the typical features of the soft liquid-metal materials and describes the various transformation capabilities, mergence of separate metal droplets, self-rotation and planar locomotion of liquid-metal objects under external or internal mechanism. Further, it introduces a series of unusual phenomena discovered while developing the shape changeable smart soft machine and interprets the related mechanisms regarding the effects of the shape, size, voltage, orientation and geometries of the external fields to control the liquid-metal transformers. Moreover, the book illustrates typical strategies to construct a group of different advanced functional liquid-metal soft machines, since such machines or robots are hard to fabricate using rigid-metal or conventional materials. With highly significant fundamental and practical findings, this book is intended for researchers interested in establishing a general method for making future smart soft machine and accompanying robots.
A full-color guide for architects and design professionals to the selection and application of steel Steel Surfaces, fourth in Zahner's Architectural Metals Series, provides a comprehensive and authoritative treatment of steel applications in architecture and art. It offers architecture and design professionals the information they need to ensure proper maintenance and fabrication techniques through detailed information and full-color images. It covers everything from the history of the metal and choosing the right alloy, to detailed information on a variety of surface and chemical finishes and corrosion resistance. The book also features case studies that offer strategies for designing and executing successful projects using steel. Steel Surfaces is filled with illustrated case studies that present comprehensive coverage of how steel is used in creating surfaces for building exteriors, interiors, and art finishes. All the books in Zahner's Architectural Metals Series offer in-depth coverage of today's most commonly used metals in architecture and art. This visual guide: Features full-color images of a variety of steel finishes, colors, textures, and forms Includes case studies with performance data that feature strategies on how to design and execute successful projects using steel Offers methods to address corrosion, before and after it occurs Explains the significance of the different alloys and the forms available to the designer Discusses what to expect when using steel in various exposures Written for architecture professionals, metal fabricators and developers, architecture students, designers, and artists working with metals, Steel Surfaces offers a logical framework for the selection and application of steel in all aspects of architecture.
This book provides a state-of-the-art review of the fail-safe and damage tolerance approaches, allowing weight savings and increasing aircraft reliability and structural integrity. The application of the damage tolerance approach requires extensive know-how of the fatigue and fracture properties, corrosion strength, potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and inspection intervals. In parallel, engineering practice involving damage tolerance requires numerical techniques for stress analysis of cracked structures. These evolved from basic mode I evaluations using rough finite element approaches, to current 3D modeling based on energetic approaches as the VCCT, or simulation of joining processes. This book provides a concise introduction to this subject.
This book showcases different processes of fabrication and processing applied to shape memory alloys. It provides details and collective information on working principles, process mechanisms, salient features, novel aspects, process capabilities, properties of material and unique applications of shape memory alloys. The recent progress on fabrication and processing are specially addressed in this book. It covers major topics of manufacturing such as machining, joining, welding and processing of shape memory alloys.
This book focus on the challenges faced by cutting materials with superior mechanical and chemical characteristics, such as hardened steels, titanium alloys, super alloys, ceramics and metal matrix composites. Aspects such as costs and appropriate machining strategy are mentioned. The authors present the characteristics of the materials difficult to cut and comment on appropriate cutting tools for their machining. This book also serves as a reference tool for manufacturers working in industry.
This book presents the fundamentals of arc phenomena, various arc welding power sources, their control strategies, welding data acquisition, and welding optimization. In addition, it discusses a broad range of electrical concepts in welding, including power source characteristics, associated parameters, arc welding power source classification, control strategies, data acquisitions techniques, as well as optimization methods. It also offers advice on how to minimize the flaws and improve the efficacy and performance of welds, as well as insights into the mechanical behavior expressed in terms of electromagnetic phenomena, which is rarely addressed. The book provides a comprehensive review of interdisciplinary concepts, offering researchers a wide selection of strategies, parameters, and sequences of operations to choose from.
Providing a comprehensive overview of hot stamping (also known as 'press hardening'), this book examines all essential aspects of this innovative metal forming method, and explores its various uses. It investigates hot stamping from both technological and business perspectives, and outlines potential future developments. Individual chapters explore topics such as the history of hot stamping, the state of the art, materials and processes employed, and how hot stamping is currently being used in the automotive industry to create ultra-high-strength steel components. Drawing on experience and expertise gathered from academia and industry worldwide, the book offers an accessible resource for a broad readership including students, researchers, vehicle manufacturers and metal forming companies.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
"Ceramography" provides detailed instructions on how to saw, mount,
grind, polish, etch, examine, interpret and measure ceramic
microstructures. This new book includes an atlas of ceramic
microstructures, quantitative microstructural example problems with
solutions, properties and data tables specific to ceramic
microstructures, more than 100 original photographs and
illustrations, and numerous practical tips and tricks of the trade.
This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress
This book provides a comprehensive introduction to and technical description of a unique patented surface-modification technology: plasma surface metallurgy with double-glow discharge plasma process, known as the Xu-Tec process. As such it promotes further attention and interest in scientific research and engineering development in this area, as well as industrial utilization and product commercialization. The Xu-Tec process has opened up a new material engineering field of "Plasma Surface Metallurgy". This surface-modification process can transform many low-grade and low-cost industrial engineering materials into "gold" materials with a high value and high grade or special functions. This improved material can be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind. "This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field." James E. Thompson, Prof. Fellow of the IEEE Dean of Engineering Emeritus University of Missouri, Columbia, Missouri, USA November, 2016 "A BREAKTHROUGH IN MAKING METAL TOUGHER". ---- SCIENCE & TECHNOLOGY Business Week, July 24, 1989 "NOVEL SURFACE ALLOYING PROCESS" --- THE LEADING EDGE TECHNOLOGY WORDWIDE Materials and Processing Report, Dec. 1987 |
![]() ![]() You may like...
The Youth Athlete - A Practitioner’s…
Brian J. Krabak, M. Alison Brooks
Paperback
R3,438
Discovery Miles 34 380
Stars of Classical
Various Artists, Emmerich Kalman/Franz Lehar/Johann Strauss II, …
CD
R96
Discovery Miles 960
Attention Deficit Hyperactivity Disorder…
Paul Cooper, Katherine M. Bilton
Paperback
R1,211
Discovery Miles 12 110
An A to Z Practical Guide to Emotional…
Harry Ayers, Cesia Prytys
Hardcover
R4,031
Discovery Miles 40 310
Intelligent Control - A Stochastic…
Kaushik Das Sharma, Amitava Chatterjee, …
Hardcover
R4,632
Discovery Miles 46 320
Nanomaterials in Manufacturing Processes
Dhiraj Sud, Anil Kumar Singla, …
Hardcover
R4,040
Discovery Miles 40 400
|