![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
Functional foods and nutraceuticals are food products that naturally offer or have been modified to offer additional health benefits beyond basic nutrition. As such products have surged in popularity in recent years, it is crucial that researchers and manufacturers understand the concepts underpinning functional foods and the opportunity they represent to improve human health, reduce healthcare costs, and support economic development worldwide. Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations presents a guide to functional foods from experienced professionals in key institutions around the world. The text provides background information on the health benefits, bioavailability, and safety measurements of functional foods and nutraceuticals. Subsequent chapters detail the bioactive components in functional foods responsible for these health benefits, as well as the different formulations of these products and recent innovations spurred by consumer demands. Authors emphasize product development for increased marketability, taking into account safety issues associated with functional food adulteration and solutions to be found in GMP adherence. Various food preservation methods aimed at enhancing the quality and shelf life of functional food are also highlighted. Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations is the first of its kind, designed to be useful to students, teachers, nutritionists, food scientists, food technologists and public health regulators alike.
In recent years, molecular microbiology has emerged as a top, cutting-edge biological discipline, thanks to the multi-disciplinary and integrative approaches taken by investigators seeking to understand the intricacies of the microbial world and how it affects human health and the biosphere. In Bacterial Cell Surfaces: Methods and Protocols, recent advances in structural biology, proteomics, and imaging techniques, together with the traditional biochemical and genetic approaches, are provided in order to present an exciting look into the structure, function, and regulation of the bacterial cell envelope. The detailed volume contains examples of traditional and innovative tools for the study of protein structure and function and enzymatic activities, the purification and analysis of macromolecules and their complexes, and the investigation of regulatory mechanisms and cell biological processes. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Bacterial Cell Surfaces: Methods and Protocols is aimed at the microbiologist, biochemist, or cell biologist, whether a beginning graduate student or a veteran experimentalist, who wishes to learn new methodologies and take advantage of the years of research and protocol optimization from the best laboratories around the world.
In response to low iron availability in the environment most microorganisms synthesize iron chelators, called siderophores. Bacteria and fungi produce a broad range of structurally diverse siderophores, which all show a very high affinity for ferric ions. "Microbial Siderophores" presents an up-to-date overview of the chemistry, biology and biotechnology of these iron chelators. Following an introduction to the structure, functions and regulation of fungal siderophores, several chapters focus on siderophores of pseudomonads. Here, the technique of siderotyping, which has proved to be a rapid, accurate and inexpensive tool for pseudomonad characterization and identification, is described. Further, the biological significance of siderophores of symbiotic fungi and the possible role of siderophores in pathogenesis are discussed. In addition to methodological approaches, chapters on the biotechnological production of siderophores and their application in promoting human and plant health are included.
Helicobacter pylori is an important human pathogen that infects up to 50% of the human population. As the leading cause of peptic ulcers, gastritis, and gastric cancer worldwide, the organism has been the subject of intensive research to unravel the mysteries of its genetics and cellular biology. In fact, the number of publications in this field has risen dramatically in recent years making it extremely difficult for even the most diligent reader to stay abreast of progress. This book distills the most important cutting-edge findings in the field to produce a timely and comprehensive review. With contributions from leading international helicobacter researchers, topics include: lipopolysaccharides, outer membrane proteins, motility and chemotaxis, type IV secretions systems, metal metabolism, molecular mechanisms of host adaptation, genomotyping, and proteonomics. As a useful introduction to the subject for new researchers and as an invaluable reference for the experienced researcher, this book is essential reading for all researchers working with Helicobacter and related organisms.
Next Generation Sequencing: Chemistry, Technology and Applications, by P. Hui Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases, by W. Zhang, H. Cui, L.-J.C. Wong Clinical Applications of the Latest Molecular Diagnostics in Noninvasive Prenatal Diagnosis, by K.C.A. Chan The Role of Protein Structural Analysis in the Next Generation Sequencing Era, by W.W. Yue, D.S. Froese, P.E. Brennan Emerging Applications of Single-Cell Diagnostics, by M. Shirai, T. Taniguchi, H. Kambara Mass Spectrometry in High-Throughput Clinical Biomarker Assays: Multiple Reaction Monitoring, by C.E. Parker, D. Domanski, A.J. Percy, A.G. Chambers, A.G. Camenzind, D.S. Smith, C.H. Borchers Advances in MALDI Mass Spectrometry in Clinical Diagnostic Applications, by E.W.Y. Ng, M.Y.M. Wong, T.C.W. Poon Application of Mass Spectrometry in Newborn Screening: About Both Small Molecular Diseases and Lysosomal Storage Diseases, by W.-L. Hwu, Y.-H. Chien, N.-C. Lee, S.-F. Wang, S.-C. Chiang, L.-W. Hsu
Hepatitis viruses research started more than fifty years ago. The names of hepatitis A and hepatitis B were introduced in 1947 when it became clear that there were two types of hepatitis that were transmitted either enterically or parenterally. It became apparent in the 1970's that there were additional hepatitis viruses distinct from hepatitis A and hepatitis B, and thus, the term non-A, non-B hepatitis was introduced. The non-A, non-B hepatitis was further divided into post-transfusion non-A, non-B hepatitis and enterically-transmitted non-A, non-B hepatitis in the 1980's. By the end of the 1980's, both post-transfusion non-A, non-B virus and enterically-transmitted non-A, non-B virus had been identified and renamed hepatitis C virus and hepatitis E virus, respectively. Hepatitis delta antigen was first recognized as an antigen associated with hepatitis B virus infection in the 1970's. In the early 1980's, a virus was isolated and named hepatitis delta virus. These five different hepatitis viruses have distinct replication pathways and are major health concerns. They have become an important topic for teaching to graduate-level and medical students. Hepatitis Viruses provides a comprehensive, up-to-date review of these viruses to readers. Each chapter is written by one of the top researchers in the field, and topics include: the epidemiology and the natural history of infection of these viruses, the molecular biology and the replication cycle of individual hepatitis viruses, host-virus interactions and the pathogenesis of hepatitis viruses, the immunology of hepatitis viruses, the relationship between hepatitis viruses and hepatocellular carcinoma, the viral vaccines and antiviral drugs. This book can serve as a supplemental reading material to graduate students and medical students, and to any researcher who would like to learn more about hepatitis viruses.
This volume describes recent advances in the bioconversion of lignocellulosics. It starts with two articles on genetics and properties of cellulases and their re- tion kinetics and mechanisms. The cost of cellulases has been a hindrance to large scale use of enzymatic hydrolysis. Two articles on cellulase production by submerged fermentation and by solid state fementation are included to describe the state of the art in this area. Dilute acid hydrolysis of cellulose continues to be of interest as well as potentially useful. The most recent advances in this area is also covered. A great deal of progress has been made in genetic engineering for improved regulation of xylose fermentation by yeasts. An article on genetically engineered Saccharomyces for simulteaneous fermentation of glucose and xylose describes the importance advances made in production of fuel ethanol from lignocellulosic biomass. In recent years, there has been increasing interests in recycling and the reuse of scrap paper as well as environment considerations. A contribution is presented which describes the research perspectives in that area. Finally, recent advances in the use of lignocellulosic biomass for the p- duction of ethanol and organic acids are presented in two articles. Renewable resources are inevitably of great importance in the years to come. There is a never-ending search for better living conditions for human beings. The more resource materials can be recycled, the richer we will be.
Fundamentals of Plant Virology is an introductory student text
covering all of modern plant virology. The author, Dr. R.E.F.
Matthews, has written this coursebook based on his classic and
comprehensive Plant Virology, Third Edition. Four introductory
chapters review properties of viruses and cells and techniques used
in their study. Five chapters are devoted to current knowledge of
all major plant viruses and related pathogens. Seven chapters
describe biological properties such as transmission, host response,
disease, ecology, control, classification, and evolution of plant
viruses. A historical and future overview concludes the text.
Fundamentals of Plant Virology is a carefully designed
instructional format for a plant virology course. It is also an
invaluable resource for students of plant pathology and plant
molecular biology.
Systematic investigations of the structure, mechanics, and dynamics of biological surfaces help us understand more about biological processes taking place at cell and bacteria surfaces. Presented here is a study of the role membrane-bound saccharides play in the modulation of interactions between cells/bacteria and their environments. In this thesis, membrane structures were probed perpendicular and parallel to the surface, and sophisticated planar models of biomembranes composed of glycolipids of various structural complexities were designed. Furthermore, specular and off-specular X-ray and neutron scattering experiments were carried out. This research has led to the development of several new methods for extracting information on the structure and mechanics of saccharide-rendered biomembranes from the measured scattering signals. In fact, more is now known about the influence of the saccharide structure. These results demonstrate that the study of planar model systems with X-ray and neutron scattering techniques can provide comprehensive insight into the structure and mechanics of complex biological surfaces.
This book should be of interest to students of animal ecology; ecology.
Epigenetic Regulation of Cancer in Response to Chemotherapy, Volume 158 of the Advances in Cancer Research series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
The book compiles an update information about the state of bioremediation in emerging Latin American countries. Some of the studied regions are sites that suffered decades of pollution by agrochemicals, heavy metals and industrial waste due to the lack of control by government regulations. Such is the case of Northern Argentina, where were illegally deposited over 30 tn of obsolete organochlorine pesticides in 1994. The content has focused in the use of native organisms (from bacteria to plants) as a viable solution to the problem of pollution, using low-cost and powerful techniques, socially well accepted and appropriate from the environmental point of view. In this context, levels of pesticide found in the Latin American population are informed. It was also displayed as a multidisciplinary approach based on concerns of a diverse group of researchers (biochemists, biologists, chemical engineers and geneticists) about a global problem, dealing with specific cases of study, with a view to project their findings to worldwide. In this regard, researchers provide their findings to regulatory sectors, whom could make appropriate decisions.
This book is highly recommended on the basis of the following points: - The editors are highly regarded in the field of mycorrhizal
biology and one is co-author of the most comprehensive textbook on
mycorrhizas;
The aim of this book is to provide readers with a wide overview of the main healthcare-associated infections caused by bacteria and fungi able to grow as biofilm. The recently acquired knowledge on the pivotal role played by biofilm-growing microorganisms in healthcare-related infections has given a new dynamic to detection, prevention and treatment of these infections in patients admitted to both acute care hospitals and long-term care facilities. Clinicians, hygienists and microbiologists will be updated by leading scientists on the state-of-art of biofilm-based infections and on the most innovative strategies for prevention and treatment of these infections, often caused by emerging multidrug-resistant biofilm-growing microorganisms.
A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors' extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. IntroductionThe authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. ApplicationThe text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator-prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models.
This book offers a comprehensive study of biological molecules acquired from marine organisms, which have been exploited for drug discovery with the aim to treat human diseases. Biomolecules have potential impacts on a diverse range of fields, including medical and pharmaceutical science, industrial science, biotechnology, basic research, molecular science, environmental science and climate change, etc. To understand and effectively apply medicinally important biomolecules, multidisciplinary approaches are called for. The ocean remains a rich biological resource, and the vast untapped potential of novel molecules from marine bio-resources has caught the interest of more and more researchers. These novel biological compounds have never been found in terrestrial or other ecosystems, but only in this rich niche. Advances in sampling techniques and technologies, along with increased funding for research and nature conservation, have now encouraged scientists to look deeper in the waters. Aquaculture supports both tremendous seafood production and the bulk production of marine-derived drugs. Furthermore, molecular methods are now being extensively employed to explore the untapped marine microbial diversity. With the help of molecular and biotech tools, the ability of marine organisms to produce new biosynthetic drugs can be greatly enhanced. This book provides an extensive compilation of the latest information on marine resources and their undisputedly vital role in the treatment of diverse ailments.
Part of a review series that looks at trends in modern biology. This book covers aspects of bioprocessing and biotransformation, where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science.
This book discusses the practical applications of quorum sensing inhibitors for both human and plant health. Quorum sensing inhibitors that disrupt microbial biofilms can be employed to treat bacterial infections. The book describes the various bioactive molecules that can serve as quorum sensing inhibitors to combat deadly bacterial infections, in addition to several synthetic quorum sensing inhibitors. Quorum sensing is the mechanism through which bacteria develop antibiotic resistance. Intended to provide a clearer understanding of the practical applications of quorum sensing inhibitors, the book details how the problem of antibiotic resistance can be countered through the intelligent application of quorum sensing inhibitors.
Pine forests face a global threat of pine wilt disease, which is being spread by vector beetles carrying pathogenic nematodes from dead trees to healthy ones. Among the host pines there are varying degrees of susceptibility, and nematode strains also contain a variety of virulences, both of which factors help to determine whether infected host trees will die or survive. As well, biotic and abiotic environmental factors influence the fate of infected trees. This book describes the history of the disease, pathogenic nematodes, vector beetles, the etiology and ecology of the disease, microorganisms involved, and control methods that utilize host resistance and biological control agents. Concrete, comprehensive, and the most up-to-date knowledge about this worldwide forest epidemic is presented for readers, enabling them to understand the nature and epidemic threat of pine wilt disease.
Recombinant viruses provide an efficient mechanism for the transfer and expression of DNA in eukaryotic cells. First, the transfer of DNA by viral infection-utilizing specific cell surface receptors and cellular intern- ization mechanisms-occurs much more readily than DNA transfer via uptake induced by such physical methods as calcium phosphate coprecipitation or electroporation. Second, the novel strategies employed by the virus to express its own genes can then be "hijacked" in the recombinant virus to express the researcher's gene of interest The purpose of Practical Molecular Virology isthus to compile a coll- tion of readily repeatable gene transfer and expression methods from wo- ers expert in the use of a variety of recombinant viral vectors . These include those designed for the production of recombinant antigens, such as pol- virus and yeast Ty-VLPs; those giving very high levels of recombinant protein expression, for example, baculovirus, vaccinia virus, and SV40; and finally viral vectors used for efficient, stable gene transfer to eu otic cells, such as retroviruses and herpesviruses . The first chapter describes the viral life cycle for each virus, and explains how this can be adapted to allow construction of recombinant vectors. Subsequent chapters deal with methods for producing and char- terizing recombinant viruses . I make no apology for the hyperproliferation of chapters dealing with recombinant retroviral methods and applications, since I believe this is clearly proportional to the recent expansion of interest in these techniques.
The future of agriculture greatly depends on our ability to enhance productivity without sacrificing long-term production potential. The application of microorganisms, such as the diverse bacterial species of plant growth promoting rhizobacteria (PGPR), represents an ecologically and economically sustainable strategy. The use of these bio-resources for the enhancement of crop productivity is gaining importance worldwide. Bacteria in Agrobiology: Crop Productivity focus on the role of beneficial bacteria in crop growth, increased nutrient uptake and mobilization, and defense against phytopathogens. Diverse group of agricultural crops and medicinal plants are described as well as PGPR-mediated bioremediation leading to food security.
Horizontal gene transfer (HGT) events encompass processes as varied as the exchange of genetic material between microbes coexisting in the same environment, between symbiotic bacteria and their eukaryotic hosts, and the evolution of organelles by symbiosis, in which whole genomes are acquired. In Horizontal Gene Transfer: Genomes in Flux, expert researchers contribute an overview of HGT concepts as well as specific case histories that highlight the most current progress to inspire future work. Divided into three sections, the volume begins with an overview of terminology, concepts and the implications of HGT on current evolutionary thought and philosophy, and continues with methods involving computer and bioinformatics analyses of genomic data as well as molecular biology techniques for identifying, quantifying, and differentiating instances of HGT. A section of case studies follows, which provides detailed accounts of how HGT has shaped evolution across the diversity of organisms and organismal lineages. As a volume of the highly successful Methods in Molecular Biology (TM) series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Cutting-edge and thoroughly detailed, Horizontal Gene Transfer: Genomes in Flux examines how HGT has contributed to genome evolution and how understanding HGT impacts our ability to accurately reconstruct and comprehend the web-like evolutionary history in order to aid scientists in furthering their own research.
This Volume presents key microscopy and imaging methods for revealing the structure and ultrastructure of environmental and experimental samples, of microbial communities and cultures, and of individual cells. Method adaptations that specifically address problems concerning the hydrophobic components of samples are highlighted and discussed. The methods described range from electron microscopy and light and fluorescence microscopy, to confocal laser-scanning microscopy, and include experimental set-ups for the analysis of interfacial processes like microbial growth and activities at hydrocarbon:water interfaces, biofilms and microbe:mineral interfaces. Three forms of fluorescence in situ hybridization - CARD-FISH, MAR-FISH and Two-pass TSA-FISH - are described for the ecophysiological analysis of functionally active microbes in samples. The methods presented will enable readers to obtain an ultrastructural picture of, and identify the key functional microbes in, samples under investigation. This in turn will constitute a key framework for the interpretation of information from other experimental approaches, such as physicochemical analyses and genomic investigations. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
When one picks up a multiauthored book in a series like this, one wonders what will be distinctive about its contents. one wonders about the "Concept of Symbiosis. " does it have the same meaning for all authors and all potential readers? one is further tempted to question the concept of stress. What is the meaning of the c- cept of stress? Some change in the biotic or abiotic aspects of the environment or habitat of the symbiotic partners? many might support the more general def- tion of symbiosis credited to de bary (1879), that symbiosis is the living together of separately named organisms. Something like Smith's (1992) more restricted PoLLnPia (P ermanent or Long-Lived intimate associations between diffe- ent organisms, usually of different sizes, in which the larger organism, the host, exploits the capabilities of one or more smaller organisms) seems to be a better ft for a book centered on the effects of stress on symbiosis. PoLLnPia implies an integrated holobiont system that has adapted itself to living successfully in a particular environment that could be construed as harsh for nonsymbiotic s- tems. often, when queried for examples, one thinks of lichens, of corals living in oligotrophic tropical waters, of Pompeii worms living in association with che- lithotrophic bacteria, and of all sorts of herbivorous animals living in associations with microorganisms. Presumably, the hosts could not survive, or thrive, in their habitats without their smaller partners doing their trophic work for their holo- otic systems.
This work introduces the concept of reformulation, a relatively new strategy to develop foods with beneficial properties. Food reformulation by definition is the act of re-designing an existing, often popular, processed food product with the primary objective of making it healthier. In recent years the concept of food reformulation has evolved significantly as additional benefits of re-designing food have become apparent. In addition to targeting specific food ingredients that are considered potentially harmful for human health, food reformulation can also be effectively used as a strategy to make foods more nutritious by introducing essential macro- /micro-nutrients or phytochemicals in the diet. Reformulating foods can also improve sustainability by introducing "waste" (and underutilized) ingredients into the food chain. In light of these developments, reformulating existing foods is now considered a realistic and attractive opportunity to provide healthy, nutritious, and sustainable food choices to the consumers and likewise improve public health. Indeed reformulation has now become essential in many cases for redressing the health properties of foods that are popularly consumed and significantly affecting public health. This edited volume covers aspects of food reformulation from various angles, exploring the role of the food industry, academia, and consumers in developing new products. Some of the major themes contributors address include methods of reformulating food products for health, improving the nutritional composition of foods, and challenges to the food industry, including regulation as well as consumer perception of new products. The book presents several case studies to clarify these objectives and illustrate the difficulties encountered in the process of developing a reformulated product. Chapters from experts in the field identify emerging and future trends in food product development, and highlight ways in which these efforts will help with increasing food security, improving nutrition and health, and promoting sustainable production. The editors have designed the book to be useful for both industry professionals and the research community. This interdisciplinary approach incorporates a wide spectrum of food sciences (including composition, engineering, and chemistry) as well as nutrition and public health. Food and nutrition professionals, policy makers, health care and social scientists, and graduate students will also find the information relevant. |
![]() ![]() You may like...
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R5,150
Discovery Miles 51 500
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
![]()
Hazardous Waste Management
Rajesh Banu Jeyakumar, Kavitha Sankarapandian, …
Hardcover
R3,371
Discovery Miles 33 710
Purification of Laboratory Chemicals…
W.L.F. Armarego
Paperback
Nonclassical Light from Semiconductor…
Jungsang Kim, Seema Somani, …
Hardcover
R4,495
Discovery Miles 44 950
|