![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
The aims of this book remain the same, that is, that it should be of in terest to all those people concerned with, or about, food hygiene in the broadest sense. There was clearly a need for a book of this sort and its success has necessitated a second edition. It will, I hope, answer criticisms that were justifiably made about certain omissions and shortcomings levelled at the earlier edition. The whole book has been thoroughly revised with the introduction of several new sections to various chapters. During the time that has elapsed since the earlier edition appeared there has been much publicity about newer forms of 'food poisoning'. Thus listeriosis is discussed in some detail whilst the problems of salmonellas in eggs and BSE are also considered. Interest in irradiated foods has waxed and waned but it is rightly included in the relevant chapter. There has been much progress in methodology with the advent of advanced molecular techniques such as gene probes and that of PCR; these are discussed briefly. I have included sections on HACCP which has come into great prominence in recent years thus answering a specific criticism made of the earlier edition. The chapter on water and waste disposal contains material on Legionnaires' disease and cryptosporidiosis, infections of much concern at the present time. Finally, the chapter on legislation has undergone a major revision with far greater emphasis being placed on EC food hygiene legislation."
Leishmania is a vector-borne pathogenic parasite found in 88 countries worldwide and is the causative agent of leishmaniasis. The different Leishmania species infect macrophages and dendritic cells of the host immune system, causing symptoms that range from disfiguring cutaneous and mucocutaneous lesions, widespread destruction of mucous membranes, or visceral disease affecting the haemopoetic organs. The recent publication of the complete genome sequences of three different Leishmania species provides new insights into this leading pathogen and presents scientists with an exciting resource to improve the understanding of its complex molecular and cellular biology. In this book, internationally recognized Leishmania experts critically review the most important aspects of current Leishmania research, providing the first coherent picture of the organism's molecular and cellular biology since the publication of the genome sequence. Chapters are written from a molecular and genomic perspective and discuss in depth Leishmania-specific aspects of trypanosomatid biology and pathology. Topics include: diagnosis and epidemiology, genome structure and content, regulation of gene expression, the Leishmania proteome, the Leishmania metabolome, Leishmania differentiation, interaction with the sand fly vector, drug discovery, drug resistance, and much more. This will be essential reading for all researchers working with Leishmania, trypanosomes, and protozoa; and is recommended for all biology and medical libraries.
Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity.
Fungal nanotechnology has great prospects for developing new products with industrial, agricultural, medicinal, and consumer applications in a wide range of sectors. The fields of chemical engineering, agri-food, biochemistry, pharmaceuticals, diagnostics, and medical device development all employ fungal products, with fungal nanomaterials currently used in applications ranging from drug development to the food industry and agricultural biotechnology. Fungal agents are an environmentally friendly, clean, non-toxic agent for the synthesis of metal nanoparticles and employ both intracellular and extracellular methods. The simplicity of scaling up and downstream processing and the presence of fungal mycelia which afford an increased surface area provide key advantages. In addition, the large spectrum of synthesized nanoparticle morphologies and the substantially faster biosynthesis rate in cell-free filtrate (due to the higher amount of proteins secreted in fungi) make this a particularly enticing route. Understanding the diversity of fungi in assorted ecosystems, as well as their interactions with other microorganisms, animals, and plants, underpins real and innovative technological developments and the applications of metal nanoparticles in many disciplines including agriculture, catalysis, and biomedical biosensors. Importantly, biogenic fungal nanoparticles show significant synergistic characteristics when combined with antibiotics and fungicides to offer substantially greater resistance to microbial growth and applications in nanomedicine ranging from topical ointments and bandages for wound healing to coated stents.
A comprehensive guide to the revolutionary area of systems biology and its application in cell culture engineering, this volume presents an overall picture of the current topics central to structural and functional genomics, proteomics, metabolomics and bioinformatics, including such hot topics as RNAi, metabolic engineering and unfolded protein response. It includes reviews of the cellular response of environmental modulation such as low temperature and osmolarity, critical assessments of the applications of metablomics and fluxomics approaches, examination of the utility of modulation of key genes and a presentation of a theory of chemical organisation which provides new view on the system's structure. The clearly written chapters by experts in the field describe methods applicable to investigating the unique facets of cell culture.
This Volume presents protocols for systems and synthetic biology applications in the field of hydrocarbon and lipid microbiology. It complements another Volume that describes generic protocols for wet experimental and computer-based systems and synthetic biology studies. The protocols in this Volume demonstrate how to employ systems and synthetic biology approaches in the design of microbes for the production of esters, isoprenoids, hydrophobic polymers, rhamnolipid biosurfactant, and peptide antimicrobial and thioether-stabilised molecules. Also presented is a protocol for the engineering of transcription factor-based biosensors for intracellular products, and another for the creation of a synthetic hydroxylase with novel activity for the selective oxyfunctionalisation of linear alkanes. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Env1r0nmenta1 ha5 m1cr0610109y emer9ed an extreme1y act1ve, - and 1mp0rtant area 0f re5earch dur1n9 the few year5 and ha5 cha1- 1en9ed 50me 10n9-he1d 0f F0r examp1e, the num6er5 0f c010ny-f0rm1n9 un1t5 06ta1ned 0n a9ar med1a have way5 6een a55umed t0 ref1ect the num6er5 0f 6acter1a pre5ent any 91ven 5amp1e. H0wever, n0w kn0wn that many 6acter1a the 1a60rat0ry ad0pt unu5ua1 d0rmant 5tate5 when 5u6jected t0 the nutr1ent-1- c0nd1t10n5 1ted c0mm0n many ec05y5tem5, wh1ch, turn, make5 the5e 6- ter1a t0 cu1ture. 7h15 0ur current t0 cu1ture the va5t maj0r1ty 0f6acter1a kn0wn t0 re51de natura1 env1r0nment5. Kn0- ed9e 0f the pre5ence 0f 50me 5pec1e5 a natura1 env1r0nment can 6e 0f cru- 1mp0rtance, w1th part1cu1ar1y re5pect t0 detect10n 0f path09en1c 0r t0 m0n1t0r1n9 the fate and 0f man1pu1ated 9enet1ca11y 0r9an15m5 w1th1n ec05y5tem5. 7heref0re, there ha5 6een much eff0rt 9enerated t0 dev- new and n0ve1 meth0d5 f0r detect10n, and rec0very 0f cr00r9an15m5 fr0m natura1 ha61tat5. Centra1 t0 many 0f the5e meth0d5 ha5 6een the deve10pment and ap- 0f the techn14ue5 0f 610109y m01ecu1ar t0 env1r0nmenta1 09y. 7he5e have re5u1ted d1rect 0fm1cr061a1 6a5ed 0n DNA w1th0ut the need f0r any cu1ture. 7here n0 d0u6t that w0u1d n0t have 6een w1th0ut the rev01ut10n c0mputer techn01- 09y that ha5 t0 the deve10pment 0f data6a5e5 acce55161e h19h1y 0f va5t am0unt5 0f 1nf0rmat10n. M01ecu1ar meth0d5 have 6een harne55ed and exp101ted a150 the deve10pment 0f meth0d5 that ena61e rap1d and aut0mated 0f m1cr00r9an15m5 fr0m natura1 env1r0nment5.
Coronaviruses were recognized as a group of enveloped, RNA viruses in 1968 and accepted by the International Committee on the Taxonomy of Viruses as a separate family, the Coronaviridae, in 1975. By 1978, it had become evident that the coronavirus genomic RNA was infectious (i. e., positive strand), and by 1983, at least the framework of the coronavirus replication strategy had been per ceived. Subsequently, with the application of recombinant DNA techniques, there have been remarkable advances in our understanding of the molecular biology of coronaviruses, and a mass of structural data concerning coronavirus genomes, mRNAs, and pro teins now exists. More recently, attention has been focused on the role of essential and accessory gene products in the coronavirus replication cyde and a molecular analysis of the structure-function relation ships of coronavirus proteins. Nevertheless, there are still large gaps in our knowledge, for instance, in areas such as the genesis of coronavirus subgenomic mRNAs or the function of the coronavirus RNA-dependent RNA polymerase. The diseases caused by coronaviruses have been known for much longer than the agents themselves. Possibly the first coronavirus-related disease to be recorded was feline infectious peritonitis, as early as 1912. The diseases associ ated with infectious bronchitis virus, transmissible gastroenteritis virus, and murine hepatitis virus were all well known before 1950."
Harnessing the sun s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on photoprotection against intense sunlight, starting with the safe removal of excess excitation energy from the light-harvesting system, which can be quickly and non-destructively assessed via non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing NPQ into the context of whole-organism function, this book aims to contribute towards identification of plant and algal lines with superior stress resistance and productivity. By addressing agreements and open questions concerning photoprotection s molecular mechanisms, this book contributes towards development of artificial photosynthetic systems. A comprehensive picture from single molecules to organisms in ecosystems, and from leading expert s views to practical information for non-specialists on NPQ measurement and terminology is presented."
Methane and its oxidation product, methanol, have occupied an important position in the chemical industry for many years: the former as a feedstock, the latter as a primary chemical from which many products are produced. More recently, the role played by methane as a potent "greenhouse" gas has aroused considerable attention from environmentalists and clima tologists alike. This role for C compounds has, of course, been quite 1 incidental to the myriad of microorganisms on this planet that have adapted their life-styles to take advantage of these readily available am bient sources. Methane, a renewable energy source that will always be with us, is actually a difficult molecule to activate; so any microorganism that can effect this may point the way to catalytic chemists looking for con trollable methane oxidation. Methanol, formed as a breakdown product of plant material, is also ubiquitous and has also encouraged the growth of prokaryotes and eukaryotes alike. In an attempt to give a balanced view of how microorganisms have been able to exploit these simple carbon sources, we have asked a number ofleading scientists (modesty forbids our own inclusion here) to contribute chapters on their specialist areas of the subject."
Based on the author's more than 40 years experience, Bacterial Growth and Form examines such important questions as what bacteria were, what they are, and what they do. Particular emphasis is placed on the ability of bacteria to establish their shapes as they grow and divide. By developing an understanding of the properties of these simple and early life forms, especially at the levels of physics and mathematics, the book provides insight into the mechanism used by bacteria to subvert physical forces to their own ends. A major consideration of this work is that prokaryotes do many of the same things that eukaryotes do, but with simpler equipment employed in an extremely sophisticated way. The book illustrates this point by closely examining the basic mechanismof hydrostatic or turgor pressure: how it functions for many of the mechanical purposes in the prokaryote, how it leads to mechanisms for resisting turgor pressure, and how it ultimately led to the development of exoskeletons and endoskeletons, and to the refinement of bacteria. Bacterial Growth and Form brings together biochemical, biophysical, and physiological principles in an authoritative, single-source volume. It provides researchers, and students in biophysics and microbiology with an indispensible reference and a new perspective into the biology of life.
Having experienced unprecedented growth since the turn of the millennium, the dramatic expansion of resources and techniques in fungal genomics is poised to fundamentally redefine the study of fungal biology. In "Fungal Genomics: Methods and Protocols," expert researchers explore the three most likely fronts upon which the field will advance: the sequencing of more and more fungal genomes, the mining of sequenced genomes for useful information, and most importantly, the use of genomics sequences to provide a foundation for powerful techniques to explain biological processes. Much of the book is dedicated to explaining established and emerging genomics-based technologies in filamentous fungi, including gene expression profiling techniques, techniques for fungal proteomics as well as various case studies that could be adapted to a wide range of fungi. Written in the highly successful "Methods in Molecular Biology " series format, protocol chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and key unpublished tips, potential pitfalls, common mistakes, and special considerations based on the unique experiences of the contributors. Authoritative and cutting-edge, "Fungal Genomics: Methods and Protocols" provides fungal biologists at any stage of their careers a user-friendly resource for fungal genomics, especially as readers branch out into unfamiliar but exciting new areas of study."
Parasitic nematodes (Nematoda) represent an important group of fish parasites. Many species are highly pathogenic, often causing serious diseases or even death to their fish hosts. The significance of recognizing these parasites increases with the development of aquaculture in many countries and with transcontinental transfers of fish. A prerequisite for developing effective control measures in fish culture is the exact identification of these parasites, as well as a knowledge of their, frequently complicated, host-parasite-environment relationships. The present monograph is the first to deal in detail with all nematodes which are parasites on European freshwater fish, providing contemporary knowledge of the taxonomy, biology and ecology of these parasites. This book is divided into introductory chapters, including general morphological, biological and ecological data on fish nematodes, their pathogenicity and methods of study; systematic part/species descriptions, data on hosts, localization, distribution and life cycles and bionomy of all species systematically arranged; and a host-nematode parasite list. This publication is intended for parasitologists, veterinarians, workers in fisheries, university students. It will also be of interest to ichthyologists, museum curators and those engaged in nature conservation.
This book provides a survey of recent advances in the development of antibiofilm agents for clinical and environmental applications. The fact that microbes exist in structured communities called biofilms has slowly become accepted within the medical community. We now know that over 80% of all infectious diseases are biofilm-related; however, significant challenges still lie in our ability to diagnose and treat these extremely recalcitrant infections. Written by experts from around the globe, this book offers a valuable resource for medical professionals seeking to treat biofilm-related disease, academic and industry researchers interested in drug discovery and instructors who teach courses on microbial pathogenesis and medical microbiology.
Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of desired resistance genes and incorporation of resistance gene(s) into cultivars and transformation of plants with selected gene(s) have been successfully performed by applying appropriate molecular techniques. Induction of resistance in susceptible cultivars by using biotic and abiotic inducers of resistance is a practical proposition for several crops whose resistance levels could not be improved by breeding or transformation procedures. The risks of emergence of pathogen strains less sensitive or resistant to chemicals have been reduced appreciably by rapid identification of resistant strains and monitoring the occurrence of such strains in different geographical locations.
Nitrogen fixation is currently of great practical importance because the use of nitrogenous fertilizers has resulted in unacceptable levels of water pollution and the fact that these fertilizers are becoming steadily less economic both in cash terms and in utilization of fossil fuels for their manufacture. This book aims to present new findings in the field of nitrogen fixation and to reflect the influence on the subject of recent developments in biochemistry, molecular biology, genetic engineering and other biotechnologies. The book includes quantitative aspects of the subject, but the many practical difficulties for accurate field assessment of nitrogen fixation and its contribution to nitrogen cycles means that many assessments are either in conflict with each other or must be accepted as tentative. Although this book is concerned essentially with how nitrogen-fixing organisms function and why they are of practical importance, rather than with details of laboratory or field techniques, an appendix deals with the main methods of measurement of nitrogen fixation and some of the problems that must be faced.
The last decade has seen an explosive increase in the volume of research on and knowledge of lactic acid bacteria, organisms of prime importance for the production of dairy products and the fermentation of various vegetables. This issue of Antonie van Leeuwenhoek, written by international experts in the field, documents these recent exciting developments with respect to genetics, metabolism and application of lactic acid bacteria for industrial and potential medical applications. This book is essential for all researchers with an interest in the fundamental biology of Gram-positive bacteria, in particular in lactic acid bacteria and their applications, not only as a source of reference but also as an indispensable source of information for further development and exploration of this field.
Adhesion plays a major role in the bacterial lifestyle. Bacteria can adhere to organic and inorganic surfaces, to each other, and of course to host cells during pathogenesis. The focus of this book is: how are such adhesion phenomena best studied? Microbial genetics experiments have greatly enhanced our knowledge of what bacterial factors are involved in adhesion. For numerous reasons, though, biochemical and structural biology knowledge of the molecular interactions involved in adhesion are limited. One major problem has been a lack of interdisciplinary research and understanding in the field. On the one hand, the microbiologists lack detailed knowledge of the biophysical possibilities and have limited access to the frequently expensive instrumentation involved while on the other hand, the experts in these methods frequently do not have access to the biological materials, nor do they necessarily understand the biological questions to be answered. The purpose of this book is thus to overcome this gap in communication between researchers in biology, chemistry and physics and to display the many ways and means to investigate bacterial adhesion. We hope to stimulate new and ground-breaking research.
This is a work on the role of fungi in processed and unprocessed foods. In addition to offering practical and applied information on fungi associated with food and beverages this second edition now covers poisonous mushrooms. Topics include water activity, specific commodities, fungi and metabolities as human dietary components, health hazards and mycotoxin producers, and mycotoxin and fungal contaminant detection.
In the 100 years since the legume-Rhizobium symbiotic nitrogen fixation interaction was first described, interest in this field has grown rapidly. The types of studies have been cyclical in nature, involving a cross-section of disciplines. The availability of cheap nitrogenous fertilizers caused much of the biological nitrogen fixation research to become more theoretical in the developed world. The high cost of energy, coupled with environmental concerns and the interest in sustainable agriculture, has stimulated research in symbiotic nitrogen fixation. The development of modern genetic techniques has resulted in interdisciplinary research on plant-microbe interactions controlling nitrogen fixation. This has resulted in a better understanding of environmental factors influencing the nodulation process, chemical signalling between the symbiotic partners and the nature of the specificity between host plant and microsymbiotant. This volume summarizes the diverse research efforts in biological nitrogen fixation by presenting a collection of papers in the areas of physiology and metabolism, taxonomy and evolution, genetics and ecology.
Modern approaches to microbial classification and identification, particularly those based on nucleic acid analysis, have raised the awareness and interest of microbiologists in systematics during the past decade. The extended scope of the subject has revolutionized microbial ecology with the demonstration of uncultivable microorganisms as a major component of the biosphere and evolution, with the ribosomal RNA phylogenetic tree as the basis of current classifications. However, advances in microbial systematics have also had enormous impact on other, diverse aspects of microbiology such as animal pathogenicity, plant-microbe interactions and relationships with food. In this book, we survey and discuss in depth the contribution of modern taxonomic approaches to our understanding of the microbiology of these various systems. The book does not concentrate on methods - these have been well reported elsewhere - instead it provides a unique insight into the application and value of modern systematics in diverse branches of microbiology. It will be of value to microbiologists at both research and technical levels who need to appreciate the range of organisms with which they work and the diversity within them. It will also be of value to teachers and students of microbiology courses who want to understand how systematics can enhance microbiology beyond the routine of classification, nomenclature, and identification.
Infectious diseases caused by bacteria remain a leading cause of death worldwide. Many of the antibiotics developed to combat bacterial infections have been rendered almost impotent due to the rapid evolution and spread of antibiotic resistance. A common and major resistance mechanism, the efflux system, enables bacteria to extrude structurally divers antimicrobials, facilitating survival in toxic environments. This book reviews the most important current research and summarizes the most spectacular discoveries in the field. |
![]() ![]() You may like...
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,556
Discovery Miles 35 560
Advances in Virus Research, Volume 102
Marilyn Roossinck, Peter Palukaitis
Hardcover
R3,856
Discovery Miles 38 560
Recent Trends in Biofilm Science and…
Manuel Simoes, Anabel Borges, …
Paperback
R3,136
Discovery Miles 31 360
Microbial Pesticides - Biological…
Vladimir V. Gouli, Jose A. P. Marcelino, …
Paperback
R4,519
Discovery Miles 45 190
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,597
Discovery Miles 35 970
Fundamentals of Viroid Biology
Charith Raj Adkar-Purushothama, Teruo Sano, …
Paperback
Microbial Inoculants - Recent Progress…
Vijay Kumar Sharma, Ajay Kumar, …
Paperback
R3,580
Discovery Miles 35 800
|