![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
Principles of Virology, the leading virology textbook in use, is an extremely valuable and highly informative presentation of virology at the interface of modern cell biology and immunology. This text utilizes a uniquely rational approach by highlighting common principles and processes across all viruses. Using a set of representative viruses to illustrate the breadth of viral complexity, students are able to under-stand viral reproduction and pathogenesis and are equipped with the necessary tools for future encounters with new or understudied viruses. This fifth edition was updated to keep pace with the ever-changing field of virology. In addition to the beloved full-color illustrations, video interviews with leading scientists, movies, and links to exciting blogposts on relevant topics, this edition includes study questions and active learning puzzles in each chapter, as well as short descriptions regarding the key messages of references of special interest. Volume I: Molecular Biology focuses on the molecular processes of viral reproduction, from entry through release. Volume II: Pathogenesis and Control addresses the interplay between viruses and their host organisms, on both the micro- and macroscale, including chapters on public health, the immune response, vaccines and other antiviral strategies, viral evolution, and a brand new chapter on the therapeutic uses of viruses. These two volumes can be used for separate courses or together in a single course. Each includes a unique appendix, glossary, and links to internet resources. Principles of Virology, Fifth Edition, is ideal for teaching the strategies by which all viruses reproduce, spread within a host, and are maintained within populations. This edition carefully reflects the results of extensive vetting and feedback received from course instructors and students, making this renowned textbook even more appropriate for undergraduate and graduate courses in virology, microbiology, and infectious diseases.
The refinement of molecular techniques and the development of new probes of the phylogeny of diazotrophs has revealed an extreme biodiversity among the nitrogen fixers, which helps explain the role that nitrogen fixation plays in maintaining life on Earth. The most efficient ecosystems are those where the bacteria are associated with a plant in differentiated organs to benefit crop productivity. Most short-term benefit from fundamental research on nitrogen fixation is likely to result in the improvement of existing nitrogen-fixing symbiotic or associative systems. Longer-term efforts are aimed at extending the nitrogen-fixing capacity to other organisms, including transfer of the genetic information for efficient nitrogen fixation into the plant genome and using current knowledge of microbe-plant interactions to extend symbiosis to cereals and, in particular, to rice. Related challenges in sustainable agriculture and forestry include the creation of new nitrogen-fixing associations. All of these approaches were discussed at the 11th International Congress on Nitrogen Fixation, Paris, France, July 20-25, 1997 and covered in the present proceedings volume.
Linear plasmids of microbes represent a heterogenous group of extrachromosomal genetic elements initially assumed to be rare and peculiar. However, we now know that they are fairly frequently occurring plasmids in bacterial and eukaryotic species. Viral strategies to avoid shortening of the linear molecules during replication imply a common ancestry. Linear plasmids may be beneficial, neutral or detrimental for the respective host; functions include production of protein toxins, specific catabolic capabilities, antibiotic resistance, pathogenicity factors, and senescence induction. Microbial Linear Plasmids constitutes the first attempt to comprehensively assemble current knowledge of different types of such elements, highlight recent developments in the field, and challenge the distinction between viruses and linear plasmids.
"This water" he told me, "runs out to the eastern region, and flows into the Arabah; and when it comes into the sea, into the sea of foul waters [i. e. , the Dead Sea], the water will become wholesome. Every living creature that swarms will be able to live wherever this stream goes; the fish will be very abundant once these waters have reached there. It will be wholesome, and everything will live wherever this stream goes. Fishermen shall stand beside it all the way from En-gedi to En-eglaim; it shall be a place for drying nets; and the fish will be of various kinds [and] most plentiful, like the fish of the Great Sea. " Ezekiel's prophecy (Ezekiel 47: 8-10) for revival and purification of the Dead Sea waters This new book on "Halophilic Microorganisms and their Environments" is the fifth volume in the COLE series (Cellular Origin and Life in Extreme Habitats (see: http://www. wkap. nl/prod/s/COLE). In the previous books we covered aspects of enigmatic microorganisms, microbial diversity, astrobiology, and symbiosis, so this book on halophilic microbes adds a fitting link to the rest of series' books. Since ancient times hypersaline habitats have been considered extreme environments, and some were thought not to sustain life at all. Yet, every organism requires salt for its existence. Salty places have been compared to an environment of extinction (e. g. , the Dead Sea).
In this work, experts review the latest research in the bioremediation of mercury, including the genetic engineering of bacteria and plants.
This book covers the wide set of well-regulated virulence factors and defense mechanisms of Pseudomonas aeruginosa focusing on stress responses and the evolution of this opportunistic human pathogen. Pseudomonas aeruginosa is responsible for one out of ten hospital infections. Additionally, this Gram-negative bacterium is accountable for persistent infections in immunocompromised individuals and the leading cause of chronic lung infections in cystic fibrosis patients. This book provides insight on the metabolic versatility of Pseudomonas aeruginosa and its mechanisms for biofilm formation that make this organism highly efficient in causing infections. The book invites the readers to learn more about the intrinsic ability of Pseudomonas aeruginosa to resist a wide variety of antimicrobial agents due to the concerted action of multidrug efflux pumps, antibiotic-degrading enzymes, and the low permeability of bacterial cellular envelopes. Particular focus is put on the evolutionary role of different types of protein-secretion systems in pathogenesis, flagella and their role in chemotaxis and surface sensing, and host-pathogen interactions. This book is a useful introduction to the field for junior scientists interested in the biology and pathogenesis of Pseudomonas aeruginosa. It is also an interesting read for advanced scientists and medical specialists working within this field, providing a broader view of the topic beyond their specific area of specialization.
Plant roots may not only be colonized by mycorrhizal fungi, but also by a myriad of bacterial and fungal root endophytes that are usually not considered by the investigators of classic symbioses. This is the first book dedicated to the interactions of non-mycorrhizal microbial endophytes with plant roots. The phenotypes of these interactions can be extremely plastic, depending on environmental factors, nutritional status, genetic disposition and developmental stages of the two partners. The book deals with diversity, life history strategies, interactions, applications in agriculture and forestry, methods for isolation, cultivation, and both conventional and molecular methods for identification and detection of these endophytes. The comprehensive reviews demonstrate the high diversity of interactions and will provoke further studies to better understand the mechanisms which determine whether a plant-microbial interaction remains asymptomatic, leads to disease or to a mutualistic interaction.
In this timely book, internationally renowned experts review literally every aspect of cutting edge coronavirus research, providing the first coherent picture of this molecular and cellular biology since the outbreak of SARS in 2003. The book is divided into two sections. Part I focuses on the molecular biology of the virus itself and includes topics such as coronavirus binding and entry, replicase gene function, cis-acting RNA elements, coronavirus discontinuous transcription, reverse genetics, genome packaging, and molecular evolution. In Part II of the book, the focus is on molecular and cellular pathogenesis and infection control. This section includes reviews of the three prototype viruses, namely avian infectious bronchitis virus, feline coronavirus, and mouse hepatitis virus. Other topics include SARS-CoV virus pathogenesis, SARS-CoV interaction with the host INF and antiviral cytokines, the newly recognized bat coronaviruses and human coronavirus NL63, and strategies for corona
The new series "Microbiology Monographs" begins with two volumes on intracellular components in prokaryotes. In this second volume, "Complex Intracellular Structures in Prokaryotes," the components, labeled complex intracellular structures, encompass a multitude of important cellular functions. Continuing and newly initiated research will provide a clearer understanding of the complex intracellular structures known at present and will bring to light surprising new ones as well.
Bacteria and fungi are able to aggregate together or on surfaces in densely packed microcolonies, facilitated by extracellular polymeric substances for cell protection and stability. These biofilms have proven to be extremely hard to eradicate and remove once established. In chronic infections, this condition can result in a high degree of morbidity and mortality as regular antibiotic treatments are ineffective against biofilms. In industrial facilities, the formation of biofilms can ruin production and result in enormous financial losses. In this book, the current state of antibiofilm research is presented by experts from around the world. Novel, cutting-edge techniques and new optimized strategies based on established methods are discussed in chapters focused on biofilm prevention, treatment and control for the application in clinical, industrial and veterinary settings. Antibiofilm strategies, such as chemical and enzymatic treatments, surface modification and coatings, quorum sensing inhibition and dispersal induction, phage therapy, cold plasma treatment, hyperbaric oxygen treatment, and metal-based nanomedicine are covered, among many others. This book contributes to the UN's Sustainable Development Goal 3: Good Health and Well-Being and is a valuable resource for healthcare professionals, microbiologists, academics and for educators to inform curricula of universities and colleges.
Viruses have limited genome-coding capacities and must therefore rely on their host cells to facilitate every step of the infection cycle from the replication of their genomes, transcription and translation of mRNAs to virus assembly. Aimed at virologists and cell biologists"Viruses and the Nucleus" provides a comprehensive and cohesive overview of this fascinating and fast moving field. It compares and contrasts the ways in which DNA viruses, retroviruses and RNA viruses interact with the host cell nucleus to bring about replication and how they subvert the host cell function to proliferate and survive. Written by a team of leading experts in the field, this multi-authored text begins with an introduction to the key nuclear process that effect virus biology including cell cycle, transcription, splicing and protein trafficking. It then goes on to explore the advances that have been made in understanding the ways in which specific viruses interact with nuclear sub-structures such as the nucleolus and ND10s, and the implications this interrelationship has for the cell cycle as a whole. ('Key Features' bullet points to be put in one box) Comprehensive cross disciplinary coverage of the interrelationship between cell biology and virology. Written by leading experts, this authorative book provides an up to date overview of this highly active field. Covers the latest research areas including virus interactions with sub-nuclear structures, virus protein trafficking into and out of the nucleus and subversion of host-cell function through specific nuclear interactions. Viruses and the Nucleus will be an invaluable resource for students of virology, microbiology and cell biology aswell as those who work within the industry.
Applies an inductive experimental approach to recognize, control, and resolve the variables that effect the wine-making process and the qual ity of the final product{focusing on the grape variety-yeast interacti on controversy. Contains over 300 original drawings, photographs, and photomicrographs-unavailable in any other source-that illustrate the d iagnostic morphology of wine yeast and bacteria used to track wine spo ilage and related problems. Promotes a better understanding of the bio technological phenomena in the wine-making process in which yeast enzy mology plays a key role with plant physiology.
Biochemical studies on plant virus RNA replication were in their infancy even in 1999-2000. The picture has improved much since structural and sequence requirements of viral RNA replication and synthesis are beginning to be understood, primarily because of the genetic, molecular, biochemical, and enzymatic studies conducted during the last six years. Certain virus-encoded essential proteins, nucleotide sequence motifs, and RNA secondary structures are central to virus RNA replication, which has a number of stages. Each stage is a complex phenomenon requiring specific factors and conditions. All this has generated much new information so that replication of plus-sense RNA plant viruses has now emerged as a rapidly developing field. However a lot of distance still has to be covered and traversing this distance could prove difficult because no organised corpus of knowledge is available. Hopefully, this book fills the niche...
This volume explores the latest techniques used to study environmental microbial evolution, with a focus on methods capable of addressing deep evolution at long timescales. The chapters in this book are organized into three parts. Part One introduces molecular dating approaches and time calibration ideas that allow for the determination of evolutionary timescales of microbial lineages. Part Two describes several advanced phylogenomic tools such as models for genome tree construction, a taxon sampling method, outgroup-independent tree-rooting methods, and gene family evolution models. Part Three covers techniques used to study trait evolution. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Environmental Microbial Evolution: Methods and Protocols is a valuable tool for all researchers who are interested in learning more about this important and evolving field.
This text contains proceedings of the Federation of European Microbiological Societies Symposium, held at Copenhagen, Denmark, during 4-8 August 1985.
In this book we present ten chapters describing the synthesis and application of nanomaterials for health, food, agriculture and bioremediation. Nanomaterials, with unique properties are now being used to improve food and agricultural production. Research on nanomaterials is indeed revealing new applications that were once thought to be imaginary. Specifically, applications lead to higher crop productivity with nanofertilisers, better packaging, longer food shelf life and better sensing of aromas and contaminants. these applications are needed in particular in poor countries where food is scarce and the water quality bad. Nanotechnology also addresses the age old issue of water polluted by industrial, urban and agricultural pollutants. For instance, research produces nanomaterials that clean water more efficiently than classical methods, thus yielding water for drinking and irrigation. However, some nanomaterials have been found to be toxic. Therefore, nanomaterials should be engineered to be safe for the environment.
Combining the disciplines of biological, physical and chemical science, microbial forensics has a rapidly rising profile in a world increasingly troubled by the threat of 'biocrime' and 'bioterrorism'. This valuable resource is a major addition to a body of literature reckoned to lack sufficient breadth. It presents a variety of phenotypic and trace signature methodologies associated with cultured microorganisms that, despite being genetically identical, may be characterized by differing cultural environments. One of the central challenges faced by those working in this field is the sheer diversity of potentially harmful agents, which in themselves total more than 1000 viruses, bacteria, fungi and protozoan parasites. Their numerous additional variants render the process of 'fingerprinting' biological agents notoriously difficult, especially when the limitations of genetic analysis are factored in. Attribution of crime is relatively easy through human DNA, but lacking the genetic individuation of humans and animals, microbial forensics has to complement phylogenetic techniques with chemical and physical ones. In the best case, genetic analysis in the 'biocrime' sector can exclude sources, narrow the population of possible sources and support associations with potential sources. To complement these genetic techniques, chemical and physical methods can be used to compare 'signatures' imparted to microbial samples by environments in which they are grown and processed. Collating a range of microbiological fingerprinting techniques in one volume, and covering everything from statistical analysis to laboratory protocols, this publication furthers the aim of forensic investigators who need robust and legally admissible forensic evidence to present in a courtroom.
This thesis studies the impact of food processing on the stability and antioxidant capacity of anthocyanins in aqueous and real food systems. It investigates the effects of temperature and pH on the stability and antioxidant capacity of anthocyanins in aqueous systems and in real semi-solid and solid food systems including bread and biscuits. The results of this thesis offer food manufacturers valuable guidelines on the production of functional foods containing anthocyanins, helping to reduce anthocyanins loss and achieve a desired amount of anthocyanins in foods with extra health benefits.
This edited volume covers all aspects of microbes in consortia; their roles in the ecological balance of soil by mineralize soil nutrients, plant growth promotion, protecting plants from disease by acting as biocontrol agents etc. Step-by-step descriptions are provided to the development and designing strategies of microbial consortia of rhizobacteria, phytohormone producing with biocontrol; ACC-deaminase producing with siderophore producing; vice-versa, and many combinations of multifaceted bacteria. The development of microbial consortia into successful bioinoculant and biofertilizers is also included in various chapters. In addition, molecular mechanisms to study the synergistic behaviors of rhizobacteria, accompanied by numerous helpful schematic drawings. Using phylogeny to justify the molecular similarity among two different bacteria identifies the possibility of microbial synergism, fruitful to development of microbial consortium and establish them in the rhizosphere with consorted mechanisms. In addition, clear drawings are included in support of understanding the natural phenomenon of synergism in below-ground ecosystem. Essential information is provided on ecological management by consorted mechanisms of rhizobacteria that directly affect ‘agriculture sustainability’ and an individual chapter is devoted to the understanding of future research, and addressing bottlenecks and successful steps.  This book assists the academicians, researchers and NGOs in negotiating the steep learning curve involved in gaining the skills needed to perform design and development of microbial consortiums, preparation of PGPR-based fertilizers, which offers significant advantages in terms of pertaining novel knowledge on the groundbreaking research, still ongoing.Â
This Microbiology Monographs volume covers the latest advances in laccase applications in bioremediation and waste valorisation. The first three chapters provide a comprehensive introduction to fungal and bacterial laccases (the two most important enzyme groups from an application viewpoint) and their practical use in bioremediation and lignocellulosic waste valorisation. Subsequent chapters discuss possible combinations of laccases and further potentially collaborating enzymes, and offer in-depth insights into laccase immobilisation for wastewater treatment and environmental biosensor applications of laccases. Lastly, the book addresses the quest for enzymes with improved and better-fitting properties, covering laccase engineering by directed and computational evolution, and novel enzymes from extreme environments. As such, it is a fascinating read for microbiologists in both industry and academia.
Dysfunction of nuclear-cytoplasmic transport systems has been associated with many human diseases. Thus, understanding of how functional this transport system maintains, or through dysfunction fails to maintain remains the core question in cell biology. In eukaryotic cells, the nuclear envelope (NE) separates the genetic transcription in the nucleus from the translational machinery in the cytoplasm. Thousands of nuclear pore complexes (NPCs) embedded on the NE selectively mediate the bidirectional trafficking of macromolecules such as RNAs and proteins between these two cellular compartments. In this book, the authors integrate recent progress on the structure of NPC and the mechanism of nuclear-cytoplasmic transport system in vitro and in vivo.
This book illustrates the importance of microbiome interactions in sustainable agriculture and the environment. The chapters of the book provide information pertaining to the vast diversity of microbiomes in many ecosystems and their functional dynamics. The book also discusses bioremediation, space microbiomes, geo microbiomes, coral microbiomes, antibiotic resistomes, and rhizomicrobiome. It also sheds light on the complex syntrophic and other symbiotic interactions between bacteria, protists, plants, and certain animals in agricultural and environmental systems. The book, in turn, provides an understanding of the adaptation, resilience, and evolution of microbial ecosystems. Further, the chapters cover metagenomics analysis of microbiomes of a novel or extreme environments, microbial resilience or temporal fluctuations, symbiosis and co-evolution of the microbiome, and novel microbial interactions in agriculture and environment. Finally, the book elucidates a comprehensive yet representative description of complex structural and functional diversity within the plant and environmental microbiomes to reveal their immense potential. This book covers United Nations Sustainable Developmental Goal 2 towards Zero Hunger. |
![]() ![]() You may like...
Low Reynolds Number - Aerodynamics and…
Mustafa Serdar Genç
Hardcover
R3,350
Discovery Miles 33 500
Genetically Modified Plants - Assessing…
Roger Hull, Graham Head, …
Hardcover
R3,235
Discovery Miles 32 350
New Optimization Algorithms and their…
Zhenxing Zhang, Liying Wang, …
Paperback
R4,223
Discovery Miles 42 230
|