![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realization that the biology of bacteria in natural conditions is generally not that of logarithmic growth and that we have very limited information on the physiology of the energy-and nutrient-limited phases of the life cyde of the bacterial cello The growing interest in nongrowing bacteria also sterns from the more recent advances on the molecular basis of the starvation-induced nongrowing bacterial cello The identification of starvation-specific gene and protein re sponders in Escherichia coli as weIl as other bacterial species has provided molecular handles for our attempts to decipher the "differentiation-like" responses and programs that nondifferentiating bacteria exhibit on nutrient limited growth arrest. Severallaboratories have contributed greatly to the progress made in life after-log research."
Orgnized in an A-to-Z format, this reference guide is designed to help users find their way in the vast--and sometimes bewildering--world of living things too small to be discerned with the naked eye. Entries cover environmental, industrial, and food microbiology, in addition to the microbiology of health and disease. Scientific techniques used for studying microorganisms are discussed, and biographies of key individuals are provided. A chronology of infections and disease epidemics from 430 B.C. to the present is included as an appendix.
Papers Presented at a Symposium held May 8--11, 1989, at the Beltsville Agricultural Research Center (BARC), Beltsville, Maryland, U.S.A.
Phytoconstituents and Antifungals covers a wide range of specific information on various phytoconstituents, their antifungal mode and the diagnosis and management of fungal infections. The book offers encouragement and empowers readers to re-embrace their knowledge of phytoconstituents and their various antifungal activities against most opportunistic pathogenic fungi as fungal diseases cause an estimated 1.5+ million deaths annually and over one billion people suffer from severe fungal disease. In this complex scenario, it is now clear that global warming and accompanying climate changes have resulted in increased incidence of many fungal infections. On the basis of all these factors, concerns on the occurrence of a pandemic fungal origin in the near future have been raised. In this context, to stop forgetting and underestimating fungal diseases is mandatory.
Symbiotic associations are of great importance in agriculture and forestry, especially in plant nutrition and plant cultivation. This book provides an up-to-date and lucid introduction to the subject. The emphasis is on describing the variety of symbiotic relationships and their agricultural and environmental applications.
The success of laboratory experiments relies heavily on the technical ability of the bench scientist, with the aid of "tricks-of-the-trade", to generate consistent and reliable data. Regrettably, however, these invaluable "tricks-of-the-trade" are frequently omitted from scientific publications. This paucity of practical information relating to the conduct of laboratory bacteriology experiments creates a gaping void in the pertinent literature.
American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite, Trypanosoma cruzi. Sixteen to eighteen million people are currently infected with this organism, and 45,000 deaths are attributed to the disease each year. Infection with T. cruzi is life-long, and 10-30% of persons who harbor the parasite chronically develop cardiac and gastrointestinal problems associated with the parasitosis. Although major progress has been made in recent years in reducing vector-borne and transfusion-associated transmission of T. cruzi, the burden of disability and death in persons chronically infected with the organism continues to be enormous. Eight to ten million persons born in countries in which Chagas disease is endemic currently reside in the United States, and epidemiologic and census data suggest that 50,000-100,000 are chronically infected with T. cruzi. The presence of these infected persons poses a risk of transmission of the parasite in the USA through blood transfusion and organ transplantation and several such cases have now been documented. American Trypanosomiasis, volume seven of World Class Parasites is written for students of tropical medicine, parasitology and public health, for researchers and practitioners alike who wish to bring themselves abreast of the status quo with respect to this disease. It is intended to supplement formal textbooks, in order to broaden and illuminate current areas of scientific and public health concern. Uniquely for T. cruzi, this book addresses parasite, vector and host biology, the pathogenesis of Chagas disease and current and prospective therapeutics and control strategies in a single volume.
This book brings together many of the world s leading experts in the fields of Antarctic terrestrial soil ecology, providing a comprehensive and completely up-to-date analysis of the status of Antarctic soil microbiology. Antarctic terrestrial soils represent one of the most extreme environments on Earth.Once thought to be largely sterile, it is now known that these diverse and often specialized extreme habitats harbor a very wide range of different microorganisms. Antarctic soil communities are relatively simple, but not unsophisticated. Recent phylogenetic and microscopic studies have demonstrated that these communities have well established trophic structuring and play a significant role in nutrient cycling in these cold and often dry desert ecosystems. They are surprisingly responsive to change and potentially sensitive to climatic perturbation. Antarctic terrestrial soils also harbor specialized refuge habitats, where microbial communities develop under (and within) translucent rocks. These cryptic habitats offer unique models for understanding the physical and biological drivers of community development, function and evolution."
Provides in-depth coverage of lectins and their interactions with micro-organisms and demonstrates how lectins function as probes for viral, bacterial, fungal and protozoal surfaces, as well as for blood group antigens.
Application of Biofilms in Applied Microbiology gives a complete overview on the structure, physiology and application of biofilms produced by microbes, along with their potential application in biotechnology. Sections cover new technologies for biofilm study, physiology of microorganisms in biofilms, bacterial biofilms, biofilm development, and fungal biofilms, summarizing various technologies available for biofilm study. Subsequent chapters describe biofilm developments with Bacillus subtillis, Escherichia coli, and Pseudomonas putida, along with several chapters on the study of microbial biofilm and their advantages and disadvantages in the area of environmental biotechnology. The book closes with a chapter on the rapid development of new sequencing technologies and the use of metagenomics, thus revealing the great diversity of microbial life and enabling the emergence of a new perspective on population dynamics.
This book is first part of the 3 volume set focusing on basic and advanced methods for using microbiology as an entrepreneurial venture. This book deals with the concept of entrepreneurship skills for production, cost-benefit analysis and marketing of vaccines, diagnostic kits, biofuels, biogas, organic acids, plant nutrition enhancer, biofungicides, molecular products from Microbes-Taq polymerase, restriction enzymes and DNA ligase. Chapters cover the applications of microorganisms in small and large scale production to achieve a sustainable output. The book provides essential knowledge and working business protocols for Enzyme Industry, Pharmaceutical Industry, vaccine production etc. This book is helpful to graduate students, research scholars and postdoctoral fellows, and teachers who belong to different disciplines via botany, industrial microbiology, pharmaceutical and biotechnology, molecular biology. Other two volumes are focused on food and agriculture microbiology.
Bridging the gap between laboratory observations and industrial practices, this work presents detailed information on recombinant micro-organisms and their applications in industry and agriculture. All recombinant microbes, bacteria, yeasts and fungi are covered.
This detailed book provides a collection of protocols for numerous experimental approaches perfected by the authors for lactic acid bacteria (LAB) research. Split in to three parts, the volume delves into the identification and metabolism of LABs, the applications of the bacteria for the food industry, as well as healthy functions of LAB. Written for the highly successful Methods in Molecular Biology series, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Lactic Acid Bacteria: Methods and Protocols serves as an ideal inspiration for many research efforts in the domains of food science and health science.
Anaerobic digestion is a major field for the treatment of waste and wastewater. Lately the focus has been on the quality of the effluent setting new demands for pathogen removal and for successful removal of unwanted chemicals during the anaerobic process. The two volumes on Biomethanation are devoted to presenting the state of art within the science and application of anaerobic digestion. They describe the basic microbiolgical knowledge of importance for understanding the processes of anaerobic bioreactors along with the newest molecular techniques for examining these systems. In addition, the applications for treatment of waste and wastewaters are presented along with the latest knowledge on process control and regulation of anaerobic bioprocesses. Together these two volumes give an overview of a growing area, which previously has never been presented in such a comprehensive way.
Handbook of Methods in Aquatic Microbial Ecology is the first comprehensive compilation of 85 fundamental methods in modern aquatic microbial ecology. Each method is presented in a detailed, step-by-step format that allows readers to adopt new methods with little difficulty. The methods represent the state of the art, and many have become standard procedures in microbial research and environmental assessment. The book also presents practical advice on how to apply the methods. It will be an indispensable reference for marine and freshwater research laboratories, environmental assessment laboratories, and industrial research labs concerned with microbial measurements in water.
Bacteriophages (viruses that infect bacteria) are fascinating organisms that have played and continue to play a key role in bacterial genetics and molecular biology. Phage can confer key phenotypes on their host for example, converting a non-pathogenic strain into a pathogen and they play a key role in regulating bacterial populations in all sorts of environments. The phage-bacterium relationship varies enormously, from the simple predator-prey model to a complex, almost symbiotic relationship that promotes the survival and evolutionary success of both. While infection of bacteria used in the fermentation industry can be very problematic and result in financial losses, in other scenarios, phage infection of bacteria can be exploited for industrial and/or medical applications. Interest in phage and phage gene products as potential therapeutic agents is increasing rapidly and is likely to have a profound impact on the pharmaceutical industry and biotechnology in general over the comi
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. ""Bacteria in Agrobiology: Plant Probiotics"" discusses the current trends and future prospects of beneficial microorganisms acting as Probiotics. Topics include the application for the aboveground fitness of plants, in mountain ecosystems, in tropical and Mediterranean forests, and in muga sericulture. Further aspects are "Arabidopsis" as a model system for the diversity and complexity of plant responses, plant parasitic nematodes, nitrogen fixation and phosphorus nutrition."
Covers developments in food safety and foodborne illness, organizing information to provide easy access to many topics, both general and specific. Comprehensive summaries of important advances in food science, compiled from over 550 sources worldwide, are presented.
This book provides fundamentals, highlights recent developments and offers new perspectives relating to the use of electrolyzed water (EW) as an emerging user- and environmental-friendly broad-spectrum sanitizer, with particular focus on the food industry. It addresses the generation, inactivation, pesticide degradation and safety of food by EW, illustrates the mechanism of the germicidal action of EW and its antimicrobial efficacy against a variety of microorganisms in suspensions. In addition, the sanitizing effects of combining EW with various chemical and physical sanitizing technologies have been evaluated, and recent developments and applications of EW in various areas including fruits and vegetables, meat, aquatic products, environment sterilization, livestock and agriculture has been described. The book can be a go-to reference book of EW for: (1) Researchers who need to understand the role of various parameters in its generation, the bactericidal mechanism of EW and its wide applications for further research and development; (2) Equipment producers who need comprehensive understanding of various factors (e.g. type of electrolyte, flow rates of water and electrolyte) which govern the efficacy of EW and developing its generators; (3) Food processors who need good understanding of EW in order to implement it in the operations and supervisors who need to balance the advantages and limitations of EW and ensuring its safe use.
This book provides salient information on all aspects of influenza/flu viruses affecting animals and humans. It specifically reviews the properties and replication of influenza viruses; their evolution and emergence; epidemiology; role of migratory birds in disease transmission; clinical signs in humans, animals, and poultry; pathogenesis and pathogenicity; public health importance and potential threats; diagnosis; prevention and control measures; and pandemic preparedness. Influenza/flu viruses evolve continuously and jump species causing epidemics as well as pandemics in both human and animals. During the past 150 years, various strains of influenza virus like the Spanish flu, Asian flu, Hong Kong flu, bird flu, and swine flu were responsible for high mortality in humans as well as birds. High mutation rates, antigenic shifts, drifts, reassortment phenomena, and the development of antiviral drug resistance all contribute to ineffective chemotherapy and vaccines against influenza viruses. Due to their devastating nature, high zoonotic implications, and high mortality in humans and poultry, they have a severe impact on the socioeconomic status of countries. Disease awareness, rapid and accurate diagnosis, surveillance, strict biosecurity, timely adoption of appropriate preventive and control measures, and pandemic preparedness are crucial to help in decreasing virus transmission, thus reducing clinical cases, deaths, and pandemic threats.
Foods fermented with lactic acid bacteria are an important part of the human diet. Lactic acid bacteria play an essential role in the preservation of food raw materials and contribute to the nutritional, organoleptic, and health properties of food products and animal feed. The importance of lactic acid bacteria in the production of foods throughout the world has resulted in a continued scientific interest in these micro-organisms over the last two decades by academic research groups as well as by industry. This research has resulted in a number of important scientific breakthroughs and has led to new applications. The most recent of these advances is the establishment of the complete genome sequences of a number of different lactic acid bacterial species. To communicate and stimulate the research on lactic acid bacteria and their applications, a series of tri-annual symposia on lactic acid bacteria was started in 1983 under the auspices of the Netherlands Society for Microbiology (NVVM), which was later also supported by the Federation of European Microbiological Societies (FEMS). The aim of these state-of-the-art symposia is to offer a unique platform for universities, institutes, and industry in this area of biotechnology, to present recent work, to obtain information on new developments, and to exchange views with colleagues from all over the world on scientific progress and applications. The growing number of participants at these symposia has been a clear demonstration of the interest of the international industrial and scientific community in this area of research. The 7th Symposium is based on a number of plenary lectures that review the scientific progress of the last years in the different areas of research on lactic acid bacteria, and which are documented in this special issue of Antonie van Leeuwenhoek.
Genetic investigations and manipulations of bacteria and bacteriophage have made vital contributions to our basic understanding of living cells and to the development of molecular biology and biotechnology. This volume is a survey of the genetics of bacteria and their viruses, and it provides students with a comprehensive introduction to this rapidly changing subject. The book is written for upper level undergraduates and beginning graduate students, particularly those who have had an introductory genetics course. The fifth edition has been extensively revised to reflect recent advances in the field. The book now has a reader-friendly look, with end-of-chapter questions, "Thinking Ahead" and "Applications" boxes to challenge students comprehension and insights. A complete glossary of commonly used terms has been revised and expanded.
This updated and expanded second edition reviews numerous aspects of the marine microbiome and its possible industrial applications. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. In the first part of the book, diversity, origin and evolution of the marine microorganisms and viruses are discussed. The microbes presented originate from all three domains of life: Bacteria, Archaea, and Eukarya. The second part sheds some light on the different communities: it describes marine habitats and how their inhabitants control biogeochemical cycles. The third part finally examines the microbial ocean as a global system and evaluates methods of utilizing marine microbial resources. Adopting a translational approach, the book connects academic research with industrial applications, making it a fascinating read and valuable resource for microbiologists from both domains.
This book has arisen from the Second European Meeting on Bacterial Genetics and Ecology (Bageco-2) held at the University of Wales, College of Cardiff which we organised on 11-12 April 1989. The meeting was attended by some 60 participants from eight European countries and was made possible by partial financial support from the Commission of the European Communities (CEC) and Imperial Chem ical Industries (UK) Ltd. The meeting was organised to discuss modern developments in the genetics of bacteria in aquatic and terrestrial habitats. It followed on from, and complemented, the first meeting of this series organised by Jean-Pierre Gratia in Brussels during April 1987 which concentrated more on medical and epidemiological issues. ! The next meeting will be organised by Michel J. Gauthier in 1991 at Nice, France. If you have been fired with enthusiasm for ecological bacterial genetics after having read this book, and want to attend the next meeting but did not hear about the one in Cardiff, you should write to Dr Gauthier to be put on the address list. A lot is now known about bacterial genetics at the physiological, biochemical and molecular level, and bacterial ecology has developed rapidly over the last 20 years. However, until very recently, few researchers have crossed the divide and linked these two specialisms.
|
![]() ![]() You may like...
Cell Volume Regulation, Volume 81
Irena Levitan, Eric Delpire, …
Hardcover
R4,620
Discovery Miles 46 200
Recent Trends in Biofilm Science and…
Manuel Simoes, Anabel Borges, …
Paperback
R3,136
Discovery Miles 31 360
Advances in Virus Research, Volume 102
Marilyn Roossinck, Peter Palukaitis
Hardcover
R3,856
Discovery Miles 38 560
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,597
Discovery Miles 35 970
60 Years of the Loeb-Sourirajan Membrane…
Hui-Hsin Tseng, Woei-Jye Lau, …
Paperback
R4,909
Discovery Miles 49 090
Advances in Virus Research, Volume 74
Karl Maramorosch, Aaron J Shatkin, …
Hardcover
R4,034
Discovery Miles 40 340
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,202
Discovery Miles 32 020
|