![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
Since the general recognition of the Archaebacteria, research into the evolution, metabolism, molecular biology and ecological roles of these fastidious anaerobes has proceeded at an ever-increasing pace. All possess a very novel biochemistry and many exploit unique ecological niches. Methanogens, which convert one-and-two carbon compounds into the important atmospheric gas methane, are the largest group among the Archaebacteria. Of all microbial groups, methanogens provide perhaps the best opportunity to study evolution because of their phyologenetic diversity and unique biochemistry. Today, the analysis of methanogens is at a threshold. Molecular-biological studies of these microorganisms are revealing more and more processes unique to this group, and in turn, studies of methanogens are providing new perspectives to the broader fields of biochemistry and molecular biology. This volume is the first book to be published on methanogenesis, and it will provide the reader with a comprehensive view of the field and point to future trends.
This text provides an account of the nature and applications of the Coliform Index. Since the beginning of the 20th century, indicator organisms, in particular the coliform group, have been used to ensure the microbial quality of drinking water. World-wide legislation to protect consumers is based on these out-dated and unreliable tests and while there is considerable concern among scientists over their use, the water industry and regulators continue to place near total reliance on the Coliform Index. This has serious implications for public health and necessitates the debate which this book enters.
This book covers the basics of animal manure, or animal dung, and highlights its applications in agriculture and biotechnology. The reader is given a comprehensive overview of the different types of animal manure. Although animal manure can cause environmental problems, e.g., when slurry pollutes rivers or burnt dung pollutes air, the book emphasizes the fact that animal dung is by no means a waste product. Animal manure is a valuable organic fertilizer that has a positive impact on soil conditions and helps save on chemical fertilizers. It is also a source of energy and can be either be used as fuel or converted into biogas through methanization. Old-age practices such as the use of dried dung as insulating material, or burnt dung as mosquito repellent are also taken up. With the increasing focus on the UN Sustainable Development Goals (SDGs), this book offers ideas and solutions related to SDG 2 Zero Hunger and SDG 15 Life on Land. The book will not only be an interesting read for students and researchers in the field of agriculture, but will also appeal to scientists working on waste management, organic manure production or in the paper industry.
This Volume presents applications of hydrocarbon microbiology in the context of environmental pollutant degradation, covering pollutants such as petroleum and related wastes (i.e. oil sludge), biofuels, lipid-rich wastes, chlorinated solvents and BTEX, in several environments (marine, soil, groundwater). The approaches presented range from laboratory experiments and treatment in reactors to field applications. Two chapters highlight innovative approaches to address relevant questions in pollutant degradation, such as low environmental concentrations of pollutants, and the biodegradation of complex pollutant mixtures using biofilms. Rather than presenting the applications in the form of protocols, some of the chapters in this Volume include detailed practical information on the opportunities offered by and limitations of the different approaches, providing valuable information for researchers planning to perform bioremediation experiments. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Bioactive compounds in food, known for their positive health effects, can be lost during handling after harvest, processing and storage. While most foods are exposed to processing to increase shelf life and edibility and to ensure microbial safety, conventional processing methods may have disadvantages, such as decreasing the nutritional quality of foods, long processing times, high temperature and high energy uses. For these reasons, novel non-thermal food processing technologies (including HPP, ultrasound) and novel thermal food processing technologies (including microwave/Ohmic heating) have become widespread. This book provides a critical evaluation of the effects of conventional, novel non-thermal, and thermal food processing techniques on the retention and bioaccessibility of bioactive compounds in food materials. Within these three categories, many different processing methods are included: fermentation/germination, drying, extrusion, and modified atmosphere packaging, as well as novel technologies, such as microwave heating, ultrasound, high pressure processing, ozonation, and membrane separation processes.
This textbook builds on the success of the earlier edition, offering alternative strategies for discovering new antibiotics. It discusses how the various types of antibiotics and related drugs work to cure infections. Then it delves into the very serious matter of how bacteria are becoming resistant to these antibiotics. It also covers the global action plan on antimicrobial resistance from the World Health Organization and discusses several Antibiotic Stewardship Programs adopted by agencies at local levels. Appropriate for a one-semester course at either the graduate or advanced undergraduate level, the book is self-contained and written in accessible language. It includes all necessary background biochemistry material and a discussion of the latest developments in the field of antibiotics. Original research works are frequently cited and experimental procedures and interpretation of results are emphasized.
This detailed volume provides scientists interested in quorum sensing with a broad spectrum of methods and protocols useful for studying bacterial communication processes at the chemico-physical, molecular, and physiological level. Divided into three sections, the content covers detection and quantification of quorum sensing signal molecules, methods for the studying of quorum sensing at the molecular, physiological, and population level, as well as identification and characterization of anti-quorum sensing agents. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Quorum Sensing: Methods and Protocols serves as a comprehensive guide to the most important methodology currently available in the field.
Most plants rely on the co-existence with microorganisms: both groups benefit from these symbioses. It has been shown that a large number of specific genes in plants and microorganisms are only activated during these interactions. Of course, various microbes also act as pathogens. Interactions between plants and microorganisms are often located on plant surfaces, such as leaf cuticles, seeds and mainly on the roots. The communication between plants and microbes is the main topic treated in "Plant Surface Microbiology," such as the signaling within a symbiosis, the molecular differences between symbiotic and pathogenic microorganisms, the role of microorganisms in the development of plants or in plant protection against deleterious agents. Further contributions are devoted to: the analysis of bacterial communities in the rhizosphere; microbial population genetics; aspects of mycorrhizal symbiosis; functional genomic approaches and the use of microorganisms as bio-indicator of soil disturbance.
Valuable progress has been made in food packaging over the past two decades, reflecting advancements in process efficiency, improved safety and quality throughout the supply chain, and the need to reduce product loss and environmental impact. A new generation of food packaging systems, including active and intelligent packaging, is emerging, based on technological breakthroughs that offer the possibility of extending shelf-life, reducing food loss, and monitoring changes in the food product. Releasing Systems in Active Food Packaging closely examines such a technological breakthrough, active releasing systems, which add compounds such as antimicrobials, antioxidants, flavors, colorants, and other ingredients to packaged food products. Chapters detail examples of recent innovations in active releasing systems, and the authors systematically address their application to different food groups. Such an in-depth approach makes this a useful reference researchers, health professionals, and food and packaging industry professionals interesting in innovative food packaging technologies.
Microbial Growth Kinetics opens with a critical review of the history of microbial kinetics from the 19th century to the present day. The results of original investigations into the growth of soil microbes in both laboratory and natural environments are summarised. The book emphasises the analysis of complex dynamic behaviour of microorganism populations. Non-steady states and unbalanced growth, multiple limitation, survival under starvation, differentiation, morphological variability, colony and biofilm growth, mixed cultures and microbial population dynamics in soil are all examined. Mathematical models are proposed which give mechanistic explanations to many features of microbial growth. The book takes general kinetic principles and their ecological applications and presents them in a way specifically designed for the microbiologist. This in itself is unusual but taken with the book's fascinating historical overview and the many fresh and sometimes controversial ideas expressed, this book is a must for all advanced students of microbiology and researchers in microbial ecology and growth.
The development of ocean sensors remains a ripe area for future investigation from science, policy and systemsengineering standpoints. Clearly, there are many options forrealizing integrated molecular analytical sensing systems. The definition of key target molecules, detection methodsand signal transduction models largely remain to be determined.Moreover, there remains ahuge challenge of merging this new class of instrument with different deployment platforms, and supplying necessarypower and data telemetry infrastructure for their operation. Molecular Biological Technologies for Ocean Sensing features methods papers on the application of ecogenomic sensors on autonomous platforms in the ocean. Topics include the use of ecogenomic sensors as a tool in whole-cell and cell-free based detection and monitoring a suite of pathogens and biotoxins that are of public health concern; documenting species diversity, evolution and metabolic function; identification and quantification of aquatic organisms; and inferring metabolic potential and activities of microorganisms in the ocean. Each contribution focuses on the (1) functional requirements for detecting specific microorganisms and the genes that they harbor and express;(2) examples of research activities that take advantage of molecular detection technologies;(3) some of the challenges faced when projecting development and use of novel instruments that will utilize molecular techniques onboard autonomous platforms;and future directions. Bringing these advancements on autonomous platforms, monitoring required sample collection and processing schemes will differ from those currently used (i.e. biomedical diagnostics). This book is the first of its kind to compile current technologies for studying organisms in situ. It will aid in transfer technology to oceanographers, ecologists, microbiologists, and environmental scientists with needs for a remote, in-water sensing capability and for integration with larger scale observatory operations. With this network in place, there is a potential to bridge the gap among regulatory agencies and academics about how this kind of technology can be used for research and monitoring purposes.
This second fully updated and extended edition of Biotechnology and Conservation of Cultural Heritage provides in-depth insights into the role of different microorganisms and microbial compounds in biodeterioration, conservation and restoration of artworks and artifacts. Latest methods to detect, remove and prevent microbial colonization on artwork surfaces and in air environments of libraries and museums are discussed and illustrated by engaging case studies. Furthermore, this edition covers new case studies on Archaeobiology, exploring ways to perform the molecular biology characterization, restoring and protecting museum taxidermal specimens, preserving and guaranteeing the future integrity. Finally, the use of halloysite-nanotubes is investigated to set up innovative protocols in consolidation and long-term protection of waterlogged and archaeological wood. This book addresses to Biologists, Microbiologists, Conservation Scientists and Conservators who are interested in understanding the role of microorganisms and bioactive molecules in conservation projects.
This comprehensive handbook provides up-to-date knowledge and practical advice from established authorities in aerosol science. It covers the principles and practices of bioaerosol sampling, descriptions and comparisons of bioaerosol samplers, calibration methods, and assay techniques, with an emphasis on practicalities, such as which sampler to use and where it should be placed. The text also offers critiques concerning handling the samples to provide representative and meaningful assays for their viability, infectivity, and allergenicity. A wide range of microbes-viz., viruses, bacteria, fungi and pollens, and their fragments-are considered from such perspectives.
This volume guides researchers on how to characterize, image rare, and hitherto unknown taxa and their interactions, to identify new functions and biomolecules and to understand how environmental changes condition the activity and the response of the organisms living with us and in our environment. Chapters cover different organism types (i.e., archaea, bacteria, fungi, protest, microfauna and microeukaryotes) and propose detailed protocols to produce high quality DNA, to analyse active microbial communities directly involved in complex interactions or processes through stable isotope probing, to identify and characterize of new functional genes, to image in situ interactions and to apply bioinformatics analysis tools to complex metagenomic or RNAseq sequence data. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Microbial Environmental Genomics (MEG): Methods and Protocols, Second Edition aims to serve as a primary research reference for researchers in microbiology working to in the expanding field of molecular ecology and environmental genomics.
This book discusses different approaches for successful pest-management through biotechnological interventions. Pest management is directly associated with the agricultural productivity. The book introduces the reader to various kinds of biopesticides that have been developed and are being developed for field application. Chemical pesticides have been widely used to control pests, and these induce pesticide resistance as well as other environmental problems. This book discusses the necessity to develop alternate pest control strategies, especially environment-friendly and target-specific biopesticides against destructive pests. The book describes important aspects such as microbial biopesticides, plant-based biopesticides, natural products that act against pests and the various other biotechnological advances and limitations of these biopesticides. It provides an in-depth knowledge of the latest research and development in the area of biopesticides. This informative book is meant for students and researchers in the fields of biotechnology, agriculture and applied microbiology.
Yeast is one of the most studied laboratory organisms and represents one of the most central models to understand how any eukaryote cell works. On the other hand, yeast fermentations have for millennia provided us with a variety of biotech products, like wine, beer, vitamins, and recently also with pharmaceutically active heterologous products and biofuels. A central biochemical activity in the yeast cell is the metabolism of carbon compounds, providing energy for the whole cell, and precursors for any of the final fermentation products. A complex set of genes and regulatory pathways controls the metabolism of carbon compounds, from nutrient sensing, signal transduction, transcription regulation and post-transcriptional events. Recent advances in comparative genomics and development of post-genomic tools have provided further insights into the network of genes and enzymes, and molecular mechanisms which are responsible for a balanced metabolism of carbon compounds in the yeast cell, and which could be manipulated in the laboratory to increase the yield and quality of yeast biotech products. This book provides a dozen of most comprehensive reviews on the recent developments and achievements in the field of yeast carbon metabolism, from academic studies on gene expression to biotechnology relevant topics.
Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realization that the biology of bacteria in natural conditions is generally not that of logarithmic growth and that we have very limited information on the physiology of the energy-and nutrient-limited phases of the life cyde of the bacterial cello The growing interest in nongrowing bacteria also sterns from the more recent advances on the molecular basis of the starvation-induced nongrowing bacterial cello The identification of starvation-specific gene and protein re sponders in Escherichia coli as weIl as other bacterial species has provided molecular handles for our attempts to decipher the "differentiation-like" responses and programs that nondifferentiating bacteria exhibit on nutrient limited growth arrest. Severallaboratories have contributed greatly to the progress made in life after-log research."
Orgnized in an A-to-Z format, this reference guide is designed to help users find their way in the vast--and sometimes bewildering--world of living things too small to be discerned with the naked eye. Entries cover environmental, industrial, and food microbiology, in addition to the microbiology of health and disease. Scientific techniques used for studying microorganisms are discussed, and biographies of key individuals are provided. A chronology of infections and disease epidemics from 430 B.C. to the present is included as an appendix.
This book aims to cover the applications of nanotechnology against human infectious diseases. The chapters of the book discuss the role of nanotechnology in the efficient diagnosis and treatment of these diseases. It explicitly provides an overview of nanodiagnostics for infectious diseases from nanoparticles-based, nanodevice-based, and point-of-care platforms. The book also covers the state-of-the-art review of recent progress in biomimetic and bioengineered nanotherapies to treat infectious diseases. It also presents a nano carrier-based CRISPR/Cas9 delivery system for gene editing and its applications for developing interventional approaches against communicable diseases. Further, it reviews the recent developments in nanotechnology to engineer nanoparticles with desired physicochemical properties as a line of defense against multi-drug resistance micro-organisms. Cutting across the disciplines, this book serves as a guide for researchers in biotechnology, parasitology, and nanotechnology.
Papers Presented at a Symposium held May 8--11, 1989, at the Beltsville Agricultural Research Center (BARC), Beltsville, Maryland, U.S.A.
The success of laboratory experiments relies heavily on the technical ability of the bench scientist, with the aid of "tricks-of-the-trade", to generate consistent and reliable data. Regrettably, however, these invaluable "tricks-of-the-trade" are frequently omitted from scientific publications. This paucity of practical information relating to the conduct of laboratory bacteriology experiments creates a gaping void in the pertinent literature.
Symbiotic associations are of great importance in agriculture and forestry, especially in plant nutrition and plant cultivation. This book provides an up-to-date and lucid introduction to the subject. The emphasis is on describing the variety of symbiotic relationships and their agricultural and environmental applications.
American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite, Trypanosoma cruzi. Sixteen to eighteen million people are currently infected with this organism, and 45,000 deaths are attributed to the disease each year. Infection with T. cruzi is life-long, and 10-30% of persons who harbor the parasite chronically develop cardiac and gastrointestinal problems associated with the parasitosis. Although major progress has been made in recent years in reducing vector-borne and transfusion-associated transmission of T. cruzi, the burden of disability and death in persons chronically infected with the organism continues to be enormous. Eight to ten million persons born in countries in which Chagas disease is endemic currently reside in the United States, and epidemiologic and census data suggest that 50,000-100,000 are chronically infected with T. cruzi. The presence of these infected persons poses a risk of transmission of the parasite in the USA through blood transfusion and organ transplantation and several such cases have now been documented. American Trypanosomiasis, volume seven of World Class Parasites is written for students of tropical medicine, parasitology and public health, for researchers and practitioners alike who wish to bring themselves abreast of the status quo with respect to this disease. It is intended to supplement formal textbooks, in order to broaden and illuminate current areas of scientific and public health concern. Uniquely for T. cruzi, this book addresses parasite, vector and host biology, the pathogenesis of Chagas disease and current and prospective therapeutics and control strategies in a single volume.
Each volume in the series focuses on a particular taxon, presenting
detailed and reliable ecotoxicological results from both laboratory
and field experiments, performed for a comprehensive range of
chemicals. A taxonomical guide to the species is given, together
with relevant biological and ecological information.
This Volume covers protocols for in-silico approaches to hydrocarbon microbiology, including the selection and use of appropriate statistical tools for experimental design replication, data analysis, and computer-assisted approaches to data storage, management and utilisation. The application of algorithms to analyse the composition and function of microbial communities is presented, as are prediction tools for biodegradation and protein interactions. The basics of a major open-source programming language, Python, are explained. Protocols for calculating reaction kinetics and thermodynamics are presented, and modelling the environmental fate of hydrocarbons during bioremediation is explained. With the exception of molecular biology studies of molecular interactions, the use of statistics is absolutely essential for both experimental design and data analysis in microbiological research, and indeed in the biomedical sciences in general. Moreover, studies of highly varying systems call for the modelling and/or application of theoretical frameworks. Thus, while two protocols in this Volume are specific to hydrocarbon microbiology, the others are generic, and as such will be of use to researchers investigating a broad range of topics in microbiology and the biomedical sciences in general. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes. |
![]() ![]() You may like...
The Effects of Air Pollution on Cultural…
John Watt, Johan Tidblad, …
Hardcover
R4,625
Discovery Miles 46 250
Swampoodle Lily - The Jesuit Church of…
Robert Francis Murray
Hardcover
R1,876
Discovery Miles 18 760
McAllen Architecture - A Visual Journey…
Pino Shah, Geoff Alger
Hardcover
R1,548
Discovery Miles 15 480
Flight Of The Diamond Smugglers - A Tale…
Matthew Gavin Frank
Paperback
|