![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
For a virus to invade a host cell it needs to penetrate the physical barrier imposed by the plasma membrane. Viruses have evolved specialized surface proteins to meet this challenge. These proteins facilitate delivery of the viral genetic information into the host cell by either fusing the viral envelope with a host cell membrane or by forming membrane pores. Membrane fusion and pore formation critically depend on the engagement of host cell receptors and receptor choice is a key determinant of viral tropism. The multi-faceted interplay between viral and cellular factors during virus entry is a fascinating field of study, which can provide important insight into viral pathogenesis and define new targets for intervention. This book provides a comprehensive overview of this exciting field of research.
During the last decade a wealth of new data has arisen from the use of new fluorescent labelling techniques and the sequencing of whole microbial genomes. One important conclusion from these data is that bacterial cells are much more structured than previously thought. The wall and the outer membrane contain topological domains, some proteins localize or move in specific patterns inside the cells, and some genes appear clustered in the chromosome and form conserved evolutionary units. Many of these structures are related to the cell cycle and to the process of cell morphogenesis, two processes that are themselves related to each other. From these observations the dcw gene cluster appears as a phylogenetic trait that is mainly conserved in bacilli. Molecules in Time and Space reviews the data on the formation of subcellular patterns or structures in bacteria, presents observations and hypotheses on the establishment and the maintenance of cell shape, and on the organization of genetic information in the chromosome.
PCR methods for the detection of microbial pathogens have made relatively little impact in diagnostic microbiology laboratories due to the common decision to use expensive commercially produced tests rather than the cheaper alternative of developing one's own tests or introducing tests developed by other workers. PCR Detection of Microbial Pathogens, Second Edition presents alternatives to commercially produced PCR methods to detect microbial pathogens. Although most of the chapters in this book are devoted to the detection of specific pathogens, the first chapters in this book should appeal to anyone working in this field regardless of their particular interests. Although PCR tests can often be made to work with relatively little effort, it is often unclear how efficient the PCR test is, how inhibitory the specimen containing the pathogen of interest is and how the test can be quality controlled. All of which are of great importance in developing tests for diagnostic use. These topics are covered in great depth at the beginning of the book. The main part of the book is devoted to describing methods for the detection of a wide range of pathogens and from widely different specimens and situations. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, PCR Detection of Microbial Pathogens, Second Edition serves microbiologists regardless of their particular interest because, when used together with the general principles, the sheer variety of procedures provided here enables the reader to design and introduce diagnostic tests in the laboratory with confidence.
Handbook of Animal Models of Infection is a complete revision of a
three-volume text that was published in 1986. It incorporates the
major advances in the field during the past decade, in particular
those concerning molecular biological procedures and new models
that have been developed. It focuses on both methods and
techniques, which makes it an essential and comprehensive reference
as well as a benchtop manual. The Handbook will help investigators
save time and effort in formulating an approach to test a new
potential therapeutic agent or combination of agents for "in vivo"
efficacy and to position the therapy for specific infections where
it may have therapeutic promise. The book is divided into five
sections; the first covering the general methodologies, followed by
sections describing experimental bacterial, mycotic, parasitic, and
viral infections.
Microbial cell wall structures play a significant role in maintaining cells' shape, as protecting layers against harmful agents, in cell adhesion and in positive and negative biological activities with host cells. All prokaryotes, whether they are bacteria or archaea, rely on their surface polymers for these multiple functions. Their surfaces serve as the indispensable primary interfaces between the cell and its surroundings, often mediating or catalyzing important interactions. "Prokaryotic Cell Wall Compounds" summarizes the current state of knowledge on the prokaryotic cell wall. Topics concerning bacterial and archaeal polymeric cell wall structures, biological activities, growth and inhibition, cell wall interactions and the applications of cell wall components, especially in the field of nanobiotechnology, are presented.
Ranging from the evolution of pathogenicity to oceanic carbon cycling, the many and varied roles that bacteriophages play in microbial ecology and evolution have inspired increased interest within the scientific community. Bacteriophages: Methods and Protocols pulls together the vast body of knowledge and expertise from top international bacteriophage researchers to provide both classical and state-of-the-art molecular techniques. With its well-organized modular design, Volume 2: Molecular and Applied Aspects examines a multitude of topics, including the bacteriophage genomics, metagenomics, transcriptomics, and proteomics, along with applied bacteriophage biology. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters consist of brief introductions to the subject, lists of the necessary materials and reagents, readily reproducible laboratory protocols, and a Notes section which details tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Bacteriophages: Methods and Protocols is a valuable reference for experienced bacteriophage researchers as well as an easily accessible introduction for newcomers to the subject.
This volume deals with "Microbial Production of L-Amino Acids" and presents five comprehensive, expert and actual review articles on the modern production of Amino Acids by application of biotechnologically optimized microorganisms. This includes not only the modern techniques of enzyme, metabolic and transport engineering but also sophisticated analytical methods like metabolic flux analysis and subsequent pathway modeling. A general review about industrial processes of Amino Acid production provides a comprehensive overview about recent strain development as well as fermentation technologies. It was our special interest to focus the other articles on the most important and best selling amino acids on the world market i.e. L-Glutamate, L-Lysine and L-Threonine. The authors of this special volume have contributed significantly to the progress of Amino Acid biotechnology in the last decades and earn our special gratitude and admiration for their expert review articles.
The search for new producers of biologically active substances (BAS) against human and animal diseases continues to be an important task in biology and medicine. Experimental work must be carried out well in advance of need because it takes an average of ten years to develop a new medication, as well as additional time to put it on the market. Study of the Protozoa forms a special branch of biology - protozoology. The traditional fields of protozoology are taxonomy, phylogeny, morphology, cytology, evolution, ecology and host parasite-interactions. The Protozoa is the only taxon among the microscopic organisms, which has not been persistently studied as a source of BAS. This book then is the result of the research on the project: "Biologically active substances of the Mastigophora (Flagellates)." The research was carried out at the Laboratory of Antibiotics, Department of Microbiology, Biological Faculty of Moscow State University. Articles of other authors on the matter have been considered as the important part of this reference book. The goal of the reference book is to elucidate scientific approaches, which lead to obtaining biologically active substances from cultures of protozoa; the book reviews the historical background in connection with contemporary development of the field. N.N. Sukhareva ACKNOWLEDGMENTS The research was performed in fruitful cooperation with my research associates (V. Urinyuk, T. Titiova, L. Udalova, R. Zeleneva, V. Brusovanik, M. Zaretskaya), postgraduate students (N. Kalenik, M. Chuenkova, V. Vasilevskaya, V. Khorokhorina), my colleagues at Moscow State University (Yu. Kozlov and I.
Strategies of Bacterial Interaction with Eukaryotic Cells *Tobias A. Oelschlaeger and Jorg Hacker 1. BENEFICIAL BACTERIAL-HOST INTERACTIONS Already during birth and soon thereafter mammals are colonized by bacte- ria belonging to the resident microbial flora. Cutaneous and mucosal sur- faces and the gastrointestinal tract are the areas which become colonized. These indigenous or autochthonous bacteria have a variety of beneficial effects on their hosts. They play a protective role by bacterial antagonism in fighting infections (Hoszowski and Truszczynski, 1997; Hentges, 1979). Pro- duction of vitamin K is another essential contribution of the resident microbial flora to the health of the host (Hill, 1997). Even more important, studies with germ-free animals demonstrated the involvement of the microbial flora on the development of the immune system. Such animals have underdeveloped and relatively undifferentiated lymphoid tissues and low concentrations of serum immune globulins ( Cebra et at., 1998). They TOBIAS A. OELSCHLAEGER and JORG HACKER Institut filr Molekulare lnfektionsbiologie, Universitiit Wiirzburg, 97070 Wiirzburg, Germany. *Corresponding author; Phone: (0)931-312150; FAX: (0)931-312578; E-mail: [email protected] xxix Tobias A. Oelschlaeger and Jorg Hacker also show defects in specific immune responsiveness and in nonspecific resistance induced by endotoxin, which may account for their lowered resis- tance. A more typical example of symbiotic interaction of bacteria with a host are bacteria like Ruminococcus in the gut of ruminants, essential for degradation of cellulose (Hobson, 1988). The closest benefical bacterial-host interactions are those of intracellular symbiotic bacteria and their host cells.
This book examines the current state of probiotic research and in particular focuses on the future potential of this important and exciting area. Probiotics and Prebiotics contains state-of-the-art commentaries on all aspects of the intestinal microflora and probiotics and provides an authoritative review of important aspects of probiotic research. Written by leading experts in the field, each chapter affords a critical insight to a particular topic, reviews current research, discusses future direction and stimulates discussion. Topics covered include the genomics of probiotic microorganisms, the developing technologies for analysis of gut microorganisms, evaluation and future potential of prebiotic substances, and the potential for disease prevention in the host by probiotic organisms. This book is an essential text for all microbiologists, health professionals, biotechnologists, pharmaceutical companies, and dairy and food scientists.
This book provides a comprehensive and detailed source of information on the genetic and regulatory aspects of biological nitrogen fixation in free-living (non-symbiotic) prokaryotes. Biological nitrogen fixation is represented in a diverse range of microorganisms, among which Klebsiella pneumoniae serves as a paradigm for the genetic analysis of diazotrophy, which is the ability to grow with N2 as sole nitrogen source. The volume uses two major complementary approaches to the subject matter. The initial chapters use an organismic-based approach by concentrating on the well-characterized diazotrophic proteobacteria, cyanobacteria, Gram-positive clostridia, and Archea. The later chapters use a comparative process-based approach and serve as overviews dealing with different regulatory aspects, electron transport to nitrogenase, and molybdenum metabolism, across the range of organisms. Whenever appropriate, historical aspects and agricultural and ecological impacts have been taken into consideration. Each chapter contains an extensive list of references. This book is the self-contained second volume of a comprehensive seven-volume series. No other available work provides the up-to-date and in-depth coverage of this series and this volume. This book is intended to serve as an indispensable reference work for all scientists working in this and closely related fields, to assist students to enter this challenging area of research, and to provide science administrators easy access to vital relevant information.
In biological terms, a parasite can be defined as a oean organism that grows, feeds and is sheltered on, or in, a different organism while contributing nothing to the survival of the host.a 1 This relationship is particularly intimate for parasitic protozoa (and single-celled fungi such as the Microsporidia), many of which not only penetrate tissue barriers, but gain entry into host cells. The entry mechanisms are as diverse as the organisms employing them and are often critical components of their pathogenic profile. All of the parasitic organisms highlighted in this new book represent medically important human pathogens that contribute significantly to the global burden of disease. As such there is intense interest in understanding the molecular basis of infection by these pathogensa "not only with regard to their clinical relevance but also the fascinating biology they reveal. For most of the parasites discussed here (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium parvum, Trypanosoma cruzi and Leishmania spp.) the ability to penetrate biological barriers and/or to establish intracellular residence is critical to survival of the pathogen in the mammalian hosts. For other parasites, such as Entamoeba, a tissue invasive phenotype is a key virulence determinant. In the ensuing 18 chapters, select members of this diverse set of protozoan parasites, as well as some examples of the extremely reduced fungal parasites classified as Microsporidia, are discussed within the context of the fascinating molecular strategies employed by these organisms to migrate across biological barriers and to establish residence within target host cells.
In this timely book, leading international Pasteurellaceae scientists critically review the most important current research providing an up-to-date review of the molecular biology, genomics and virulence of these fascinating organisms. Topics covered include taxonomy and biodiversity, phylogeny, comparative genomics, competence, DNA uptake and transformation, proteomics and protein secretion, RTX toxins, lipopolysaccharides, biofilms, quorum sensing, antimicrobial resistance, diagnosis, and OMP and iron uptake. Each chapter is independent and can be read in isolation and as a whole the book provides an important resource summarising our current knowledge of Pasteurellaceae genomics and molecular biology. Essential reading for everyone working on Pasteurellaceae and related organisms.
This volume covers the fields of origin, evolution and phylogenesis from prokaryotic to eukaryotic cells. The eminent authors, experts in their fields, review the three kingdoms of life (Archea, Eubacteria and Eukarya) from molecular evolutionary levels to ecological aspects in enigmatic habitats, including general reviews of puzzling pro-and eukaryotic organisms and their domains. We discuss dry habitats, thermophilic (cells in hot springs and undersea thermal vents up to 110AC), psychrophilic (cryophiles) and halophilic (high salt concentrations) niches which among the harshest conditions found on Earth where microbial life is frequently detected. Some chapters deal with the organisms which grow in extreme pH conditions (acidity vs. alkalinity), and under hydrostatic pressure in the deep sea, and microbial growth on petroleum. Other contributors present their research on aerobiology and microbes growing in various gases and various levels of radiation, including cellular morphological modification in these extremophilic microbes. This volume also includes the symbiotic association between two or more organisms on the endocellular and exocellular levels. Finally one paper identifies the extremophiles as candidates for exobiology. This is a valuable comprehensive volume in English that covers most of the extremophiles in a new light with current research data. Audience: Students, lecturers and researchers; scholars in the fields of biology, evolutionary biology and chemistry, and other evolutionary fields, and the intelligent layman.
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. "Bacteria in Agrobiology: Crop Ecosystems" describes the beneficial role of plant growth promoting bacteria with special emphasis on oil yielding crops, cereals, fruits and vegetables. Chapters present studies on various aspects of bacteria-plant interactions, soil-borne and seed-borne diseases associated with food crops such as rice, sesame, peanuts, and horticultural crops. Further reviews describe technologies to produce inoculants, the biocontrol of post harvest pathogens as a suitable alternative to agrochemicals, and the restoration of degraded soils.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 285 volumes have been
published (all of them still in print) and much of the material is
relevant even today-truly an essential publication for
researchersin all fields of life sciences.
Our world is built on an invisible one we are barely beginning to understand. In The Hidden Half of Nature, geologist David R. Montgomery and biologist Anne Bikle argue that Earth's smallest creatures-microbes-could fundamentally change how we grow food, what we eat and how we practise medicine. The Hidden Half of Nature shares Montgomery and Bikle's efforts to turn a barren patch of ground into a flourishing garden, and Bikle's struggle with cancer. Taking readers deep into the science and history of agriculture and immunology, they show that microbes can provide powerful solutions to the problems plaguing modern agriculture as well as our own bodies. A spellbinding story, The Hidden Half of Nature reveals how we can restore fertility to the land and defeat chronic diseases.
Biological nitrogen fixation (BNF) has become important in rice farming systems because this process diminishes the need for expensive chemical fertilizers which have been associated with numerous health and environmental problems. The extensive exploitation of BNF would provide economic benefits to small farmers, avoiding all malign influences of chemical fertilizers. Meanwhile, advances in biotechnology have brought rice genetics to the threshold of new opportunities for increasing rice production. This volume focuses, in six different sessions, on the role of BNF in the improvement of rice production in the light of the current state of the art of BNF technology transfer and diffusion. New ideas on BNF technology in research, extension information and inoculant technology are also included, together with the socio-economic impacts of using BNF in rice farm systems.
Established for almost 30 years, Methods in Microbiology is the
most prestigious series devoted to techniques and methodology in
the field. Now totally revamped, revitalized, with a new format and
expanded scope, Methods in Microbiology will continue to provide
you with tried and tested, cutting-edge protocols to directly
benefit your research.
The functional analysis of plant-microbe interactions has re-emerged in the past 10 years due to spectacular advances in integrative study models. This book summarizes basic and technical information related to the plant growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum, considered to be one of the most representative PGPR last 40 years. We include exhaustive information about the general microbiology of genus Azospirillum, their identification strategies; the evaluation of plant growth promoting mechanisms, inoculants technology and agronomic use of these bacteria and some special references to the genetic technology and use.
Plant conservation is increasingly recognised as an outstanding global priority, yet despite considerable efforts over the last few decades, the number of threatened species continues to rise. The practice of plant conservation has for too long been a rather hit-or-miss mixture of methods. While microorganisms have been recognised as a crucial and essential element in supporting the lifecycles of plant species, there has been limited recognition of the relationships between macro level conservation facilitating ecosystem functioning at the micro level. This book addresses the role of microorganisms in conservation - both their support functions and deleterious roles in ecosystem processes and species survival. Importantly, a number of authors highlight how microbial diversity is, itself, now under threat from the many and pervasive influences of man. What is clear from this volume is that like many contemporary treatments of plant and animal conservation, the solution to mitigate the erosion of biodiversity is not simple. This book represents an attempt to bring to the fore the ecological underwriting provided by microorganisms. |
![]() ![]() You may like...
Land Surface Remote Sensing in Urban and…
Nicolas Baghdadi, Mehrez Zribi
Hardcover
Quantum Random Number Generation…
Christian Kollmitzer, Stefan Schauer, …
Hardcover
R3,890
Discovery Miles 38 900
Pearson REVISE Edexcel GCSE History…
Rob Bircher
Digital product license key
R252
Discovery Miles 2 520
Environmental Risk Planning and…
Simon Gerrard, R.K. Turner, …
Hardcover
R8,969
Discovery Miles 89 690
Research Handbook on Ethical Consumption…
Marylyn Carrigan, Victoria K. Wells, …
Hardcover
R6,169
Discovery Miles 61 690
|