![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
During the past twenty years Listeria monocytogenes has emerged as one of the most intensely studied bacterial pathogens. New windows are constantly being opened into the complexity of host cell biology and the interplay of the signals connecting the various cells and organs involved in the host response. This volume includes research from studies at the molecular level on the pathogenesis of Listeria monocytogenes and the response of the host to its infections.
Mycorrhizal fungi are microbial engines which improve plant vigor and soil quality. They play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and the productivity of plants. Scientific research involves multidisciplinary approaches to understand the adaptation of mycorrhizae to the rhizosphere, mechanism of root colonization, effect on plant physiology and growth, biofertilization, plant resistance and biocontrol of plant pathogens. This book discusses and goes into detail on a number of topics: the molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants; the role of AM fungi in disease protection, alleviation of soil stresses and increasing grain production; interactions of AM fungi and beneficial saprophytic mycoflora in terms of plant growth promotion; the role of AM fungi in the restoration of native ecosystems; indirect contributions of AM fungi and soil aggregation to plant growth and mycorrhizosphere effect of multitrophic interaction; the mechanisms by which mycorrhizas change a disturbed ecosystem into productive land; the importance of reinstallation of mycorrhizal systems in the rhizosphere is emphasized and their impact on landscape regeneration, and in bioremediation of contaminated soils; Ectomycorrhizae (ECM) and their importance in forest ecosystems and associations of ECM in tropical rain forests function to maintain tropical monodominance; in vitro mycorrhization of micro-propagated plants, and visualizing and quantifying endorhizal fungi; the use of mycorrhizae, mainly AM and ECM, for sustainable agriculture and forestry.
The discovery of Epstein-Barr virus (EBV) by Epstein, Achong, and Barr, reported in 1964 (Lancet 1:702-703), was stimulated by Denis Burkitt's rec- nition of a novel African childhood lymphoma and his postulation that an infectious agent was involved in the tumor's etiology (Nature194:232-234, 1962). Since then, molecular and cellular biological and computational technologies have progressed by leaps and bounds. The advent of recombinant DNA technology opened the possibilities of genetic research more than most would have realized. Not only have the molecular tools permitted the analyses of viral mechanisms, but, importantly, they have formed the basis for discerning viral presence and, subsequently, viral involvement in an increasing number of diseases. Though in every field of science the search for further knowledge is likely to be a limitless phenomenon, the distinct goal in EBV research, namely, to gain sufficient insight into the viral-host interaction to be able to intercept the pathogenic process, is beginning to be realized. Epstein-Barr virus research has effectively entered the postgenomic era that began with the sequencing of the first strains, cloned in the mid to late 1980s.
Plasmids are fascinating entities which can replicate autonomously in bacterial, archaeal, and eukaryotic cells. They profit from the cellular environment of the host but can also carry a rich diversity of genes which can be beneficial for the host. Plasmids confer the ability to degrade organic compounds and to fix nitrogen. In addition, plasmids carry antibiotic resistance genes and their spread in pathogenic bacteria is of great medical importance. Plasmids are used in molecular studies of various organisms with ramifications in synthetic biology, medicine, ecology, and evolution, as well as basic research in molecular and structural biology. Written by acknowledged experts in the field, this volume provides an up-to-date treatment of the structure, function, and application of plasmids, with a particular emphasis on current and future trends. The book is aimed primarily at research scientists, graduate students, and professional scientists, but will also be of great interest to all
This new edition offers detailed overviews covering a wide area of fungal growth and reproduction on the mechanistic and molecular level. It includes 18 chapters by eminent scientists in the field and is - like the previous edition - divided into the three sections: Vegetative Processes and Growth, Signals in Growth and Development, and Reproductive Processes. Major topics of the first section include dynamic intracellular processes, apical growth, hyphal fusion, and aging. The second section analyses autoregulatory signals, pheromone action, and photomorphogenesis and gravitropism abiotic signals. The third section reveals details of asexual and sexual development in various fungal model systems, culminating in fruit body formation in basidiomycetes, which is a sector of growing economic potential. Since the publication of the first edition of this volume in 1994 and the second edition in 2006, the field of fungal biology has continued to expand thanks to improvements in omics technologies and the application of genetic tools to an increasing variety of fungal models. Several additional chapters by a new generation of fungal biologists discuss this diversity and guarantee lively reading.
The enormous advances in molecular biology that have been witnessed in . Not recent years have had major impacts on many areas of the biological sciences least of these has been in the field of clinical bacteriology and infectious disease . Molecular Bacteriology: Protocols and ClinicalApplications aims to provide the reader with an insight into the role that molecular methodology has to play in modern medical bacteriology. The introductory chapter ofMolecular Bacteriology: ProtocolsandCli- cal Applications offers a personal overview by a Consultant Medical Microbio- gist of the impact and future potential offered by molecular methods. The next six chapters comprise detailed protocols for a range of such methods . We believe that the use of these protocols should allow the reader to establish the various methods described in his or her own laboratory. In selecting the methods to be included in this section, we have concentrated on those that, arguably, have greatest current relevance to reference clinical bacteriology laboratories; we have deliberately chosen not to give detailed protocols for certain methods, such as multilocus enzyme electrophoresis that, in our opinion, remain the preserve of specialist la- ratories and that are not currently suited for general use. We feel that the methods included in this section will find increasing use in diagnostic laboratories and that it is important that the concepts, advantages, and limitations of each are th- oughly understood by a wide range of workers in the field .
Research on bacterial adhesion and its significance is a major field involving many different aspects of nature and human life, such as marine science, soil and plant ecology, most importantly, the biomedical field. The adhesion ofbacteria to the food industry, and human tissue surfaces and implanted biomaterial surfaces is an important step in the patho genesis of infection. Handbook 0/ Bacterial Adhesion: Principles, Methods, and Applications is an outgrowth of the editors' own quest for information on laboratory techniques for studying bacte rial adhesion to biomaterials, bone, and other tissues and, more importantly, a response to significant needs in the research community. This book is designed to be an experimental guide for biomedical scientists, biomaterials scientists, students, laboratory technicians, or anyone who plans to conduct bacterial adhesion studies. More specifically, it is intended for all those researchers facing the chal lenge of implant infections in such devices as orthopedic prostheses, cardiovascular devices or catheters, cerebrospinal fluid shunts or extradural catheters, thoracic or abdominal catheters, portosystemic shunts or bile stents, urological catheters or stents, plastic surgical implants, oral or maxillofacial implants, contraceptive implants, or even contact lenses. It also covers research methods for the study of bacterial adhesion to tis sues such as teeth, respiratory mucosa, intestinal mucosa, and the urinary tract. In short, it constitutes a handbook for biomechanical and bioengineering researchers and students at all levels."
Prokaryotic Toxins - Antitoxins gives the first overview of an exciting and rapidly expanding research field. Toxin - antitoxin (TA) genes were discovered on plasmids 30 years ago. Since then it has become evident that TA genes are highly abundant in bacterial and archaeal chromosomes. TA genes code for an antitoxin that combine with and neutralize a cognate toxin. When activated, the toxins inhibit protein synthesis and cell growth and thereby induce dormancy and multidrug tolerance (persistence). Remarkably, in some species, the TA gene families have undergone dramatic expansions. For example, the highly persistent major human pathogen Mycobacterium tuberculosis has "100 TA loci. The large expansion of TA genes by some organisms is a biological mystery. However, recent observations indicate that TA genes contribute cumulatively to the persistence of bacteria. This medically important phenomenon may thus for the first time become experimentally tractable at the molecular level.
This book is written for scientists and engineers wishing to become familiar with biological micro- and nanotribology as a new interdisciplinary field of research combining methods and knowledge of physics, chemistry, mechanics and biology. Biological micro- and nanotribology aims to gather information about friction, adhesion and wear of biological systems and to apply this new knowledge to the design of micro-electro-mechanical systems, the development of new types of monolayer lubrication, the invention of new adhesives or the construction of artificial joints. Biologists, chemists, physicists and tribologists and many other applied scientists will find this book an essential addition to their libraries. Moreover, this book also gives an introduction to the higher levels of micromechanical analysis. It will provide valuable assistance for graduate students intending to become active in interdisciplinary research.
Arbuscular Mycorrhiza (AM) is the most common mycorrhizal type involved in agricultural systems, and the most widespread plant root symbiosis. The fungi involved (Glomales) are known to promote plant growth and health by acting as biofertilizers, bioprotectors and bioregulators. The main aim of this book is to provide readers with theoretical and applied knowledge essential for the use of AM fungi in improving plant health and fitness, production of high quality food and in conservation of natural resources. The different chapters target understanding the role of AM fungi in sustainable crop production, discussing ways to improve biological equilibria between microorganisms in the mycorrhizosphere, analysing genetic, physiological, cellular and molecular bases of AM functioning and establishing technologies for inoculum production, according to the regulatory guidelines for application.
Metabolic engineering has been developed over the past 20 years to become an important tool for the rational engineering of industrial microorganisms. This book has a particular interest in the methods and applications of metabolic engineering to improve the production and yield of a variety of different metabolites. The overall goal is to achieve a better understanding of the metabolism in different microorganisms, and provide a rational basis to reprogram microorganisms for improved biochemical production.
For a virus to invade a host cell it needs to penetrate the physical barrier imposed by the plasma membrane. Viruses have evolved specialized surface proteins to meet this challenge. These proteins facilitate delivery of the viral genetic information into the host cell by either fusing the viral envelope with a host cell membrane or by forming membrane pores. Membrane fusion and pore formation critically depend on the engagement of host cell receptors and receptor choice is a key determinant of viral tropism. The multi-faceted interplay between viral and cellular factors during virus entry is a fascinating field of study, which can provide important insight into viral pathogenesis and define new targets for intervention. This book provides a comprehensive overview of this exciting field of research.
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
Handbook of Animal Models of Infection is a complete revision of a
three-volume text that was published in 1986. It incorporates the
major advances in the field during the past decade, in particular
those concerning molecular biological procedures and new models
that have been developed. It focuses on both methods and
techniques, which makes it an essential and comprehensive reference
as well as a benchtop manual. The Handbook will help investigators
save time and effort in formulating an approach to test a new
potential therapeutic agent or combination of agents for "in vivo"
efficacy and to position the therapy for specific infections where
it may have therapeutic promise. The book is divided into five
sections; the first covering the general methodologies, followed by
sections describing experimental bacterial, mycotic, parasitic, and
viral infections.
The book contains recent developments and contemporary research in mathematical analysis and in its application to problems arising from the biological and physical sciences. The book is of interest to readers who wish to learn of new research in such topics as linear and nonlinear analysis, mathematical biology and ecology, dynamical systems, graph theory, variational analysis and inequalities, functional analysis, differential and difference equations, partial differential equations, approximation theory, and chaos. All papers were prepared by participants at the International Conference on Recent Advances in Mathematical Biology, Analysis and Applications (ICMBAA-2015) held during 4-6 June 2015 in Aligarh, India. A focal theme of the conference was the application of mathematics to the biological sciences and on current research in areas of theoretical mathematical analysis that can be used as sophisticated tools for the study of scientific problems. The conference provided researchers, academicians and engineers with a platform that encouraged them to exchange their innovative ideas in mathematical analysis and its applications as well as to form interdisciplinary collaborations. The content of the book is divided into three parts: Part I contains contributions from participants whose topics are related to nonlinear dynamics and its applications in biological sciences. Part II has contributions which concern topics on nonlinear analysis and its applications to a variety of problems in science, engineering and industry. Part III consists of contributions dealing with some problems in applied analysis.
This volume deals with "Microbial Production of L-Amino Acids" and presents five comprehensive, expert and actual review articles on the modern production of Amino Acids by application of biotechnologically optimized microorganisms. This includes not only the modern techniques of enzyme, metabolic and transport engineering but also sophisticated analytical methods like metabolic flux analysis and subsequent pathway modeling. A general review about industrial processes of Amino Acid production provides a comprehensive overview about recent strain development as well as fermentation technologies. It was our special interest to focus the other articles on the most important and best selling amino acids on the world market i.e. L-Glutamate, L-Lysine and L-Threonine. The authors of this special volume have contributed significantly to the progress of Amino Acid biotechnology in the last decades and earn our special gratitude and admiration for their expert review articles.
Referred to in the Bible, pictured on the wall-friezes of ancient Egyptian tombs, and a subject of fascination for generations of scientists, the tilapias (Cichlidae: Tilapiini) have featured in the diet and culture of humankind for thousands of years. The present century has seen their spread from Africa throughout the tropics and sub-tropics, largely for food and fisheries purposes. This book attempts to pull together our knowledge of this important group - their biology and fisheries and aquaculture - in a single volume, something that has not been done comprehensively for nearly two decades. A succession of chapters by acknowledged authorities covers evolution, phylogenetic relationships and biogeography, reproductive biology, mating systems and parental care, diet, feeding and digestive physiology, environmental physiology and energetics, the role of tilapias in ecosystems, population dynamics and management, genetics, seed production, nutrition, farming, economics and marketing. The book is aimed at biologists, fisheries scientists, aquaculturists, and all interested in aquatic ecology.
This book examines the current state of probiotic research and in particular focuses on the future potential of this important and exciting area. Probiotics and Prebiotics contains state-of-the-art commentaries on all aspects of the intestinal microflora and probiotics and provides an authoritative review of important aspects of probiotic research. Written by leading experts in the field, each chapter affords a critical insight to a particular topic, reviews current research, discusses future direction and stimulates discussion. Topics covered include the genomics of probiotic microorganisms, the developing technologies for analysis of gut microorganisms, evaluation and future potential of prebiotic substances, and the potential for disease prevention in the host by probiotic organisms. This book is an essential text for all microbiologists, health professionals, biotechnologists, pharmaceutical companies, and dairy and food scientists.
This book provides a comprehensive and detailed source of information on the genetic and regulatory aspects of biological nitrogen fixation in free-living (non-symbiotic) prokaryotes. Biological nitrogen fixation is represented in a diverse range of microorganisms, among which Klebsiella pneumoniae serves as a paradigm for the genetic analysis of diazotrophy, which is the ability to grow with N2 as sole nitrogen source. The volume uses two major complementary approaches to the subject matter. The initial chapters use an organismic-based approach by concentrating on the well-characterized diazotrophic proteobacteria, cyanobacteria, Gram-positive clostridia, and Archea. The later chapters use a comparative process-based approach and serve as overviews dealing with different regulatory aspects, electron transport to nitrogenase, and molybdenum metabolism, across the range of organisms. Whenever appropriate, historical aspects and agricultural and ecological impacts have been taken into consideration. Each chapter contains an extensive list of references. This book is the self-contained second volume of a comprehensive seven-volume series. No other available work provides the up-to-date and in-depth coverage of this series and this volume. This book is intended to serve as an indispensable reference work for all scientists working in this and closely related fields, to assist students to enter this challenging area of research, and to provide science administrators easy access to vital relevant information.
In biological terms, a parasite can be defined as a oean organism that grows, feeds and is sheltered on, or in, a different organism while contributing nothing to the survival of the host.a 1 This relationship is particularly intimate for parasitic protozoa (and single-celled fungi such as the Microsporidia), many of which not only penetrate tissue barriers, but gain entry into host cells. The entry mechanisms are as diverse as the organisms employing them and are often critical components of their pathogenic profile. All of the parasitic organisms highlighted in this new book represent medically important human pathogens that contribute significantly to the global burden of disease. As such there is intense interest in understanding the molecular basis of infection by these pathogensa "not only with regard to their clinical relevance but also the fascinating biology they reveal. For most of the parasites discussed here (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium parvum, Trypanosoma cruzi and Leishmania spp.) the ability to penetrate biological barriers and/or to establish intracellular residence is critical to survival of the pathogen in the mammalian hosts. For other parasites, such as Entamoeba, a tissue invasive phenotype is a key virulence determinant. In the ensuing 18 chapters, select members of this diverse set of protozoan parasites, as well as some examples of the extremely reduced fungal parasites classified as Microsporidia, are discussed within the context of the fascinating molecular strategies employed by these organisms to migrate across biological barriers and to establish residence within target host cells.
This volume covers the fields of origin, evolution and phylogenesis from prokaryotic to eukaryotic cells. The eminent authors, experts in their fields, review the three kingdoms of life (Archea, Eubacteria and Eukarya) from molecular evolutionary levels to ecological aspects in enigmatic habitats, including general reviews of puzzling pro-and eukaryotic organisms and their domains. We discuss dry habitats, thermophilic (cells in hot springs and undersea thermal vents up to 110AC), psychrophilic (cryophiles) and halophilic (high salt concentrations) niches which among the harshest conditions found on Earth where microbial life is frequently detected. Some chapters deal with the organisms which grow in extreme pH conditions (acidity vs. alkalinity), and under hydrostatic pressure in the deep sea, and microbial growth on petroleum. Other contributors present their research on aerobiology and microbes growing in various gases and various levels of radiation, including cellular morphological modification in these extremophilic microbes. This volume also includes the symbiotic association between two or more organisms on the endocellular and exocellular levels. Finally one paper identifies the extremophiles as candidates for exobiology. This is a valuable comprehensive volume in English that covers most of the extremophiles in a new light with current research data. Audience: Students, lecturers and researchers; scholars in the fields of biology, evolutionary biology and chemistry, and other evolutionary fields, and the intelligent layman.
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. "Bacteria in Agrobiology: Crop Ecosystems" describes the beneficial role of plant growth promoting bacteria with special emphasis on oil yielding crops, cereals, fruits and vegetables. Chapters present studies on various aspects of bacteria-plant interactions, soil-borne and seed-borne diseases associated with food crops such as rice, sesame, peanuts, and horticultural crops. Further reviews describe technologies to produce inoculants, the biocontrol of post harvest pathogens as a suitable alternative to agrochemicals, and the restoration of degraded soils.
During the last decade a wealth of new data has arisen from the use of new fluorescent labelling techniques and the sequencing of whole microbial genomes. One important conclusion from these data is that bacterial cells are much more structured than previously thought. The wall and the outer membrane contain topological domains, some proteins localize or move in specific patterns inside the cells, and some genes appear clustered in the chromosome and form conserved evolutionary units. Many of these structures are related to the cell cycle and to the process of cell morphogenesis, two processes that are themselves related to each other. From these observations the dcw gene cluster appears as a phylogenetic trait that is mainly conserved in bacilli. Molecules in Time and Space reviews the data on the formation of subcellular patterns or structures in bacteria, presents observations and hypotheses on the establishment and the maintenance of cell shape, and on the organization of genetic information in the chromosome.
Microbial cell wall structures play a significant role in maintaining cells' shape, as protecting layers against harmful agents, in cell adhesion and in positive and negative biological activities with host cells. All prokaryotes, whether they are bacteria or archaea, rely on their surface polymers for these multiple functions. Their surfaces serve as the indispensable primary interfaces between the cell and its surroundings, often mediating or catalyzing important interactions. "Prokaryotic Cell Wall Compounds" summarizes the current state of knowledge on the prokaryotic cell wall. Topics concerning bacterial and archaeal polymeric cell wall structures, biological activities, growth and inhibition, cell wall interactions and the applications of cell wall components, especially in the field of nanobiotechnology, are presented. |
You may like...
The Art of Fortune Telling - Predicting…
Jonathan Royle, Alex Smith
Hardcover
R2,100
Discovery Miles 21 000
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
(1)
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
|