![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical)
This book examines the current state of probiotic research and in particular focuses on the future potential of this important and exciting area. Probiotics and Prebiotics contains state-of-the-art commentaries on all aspects of the intestinal microflora and probiotics and provides an authoritative review of important aspects of probiotic research. Written by leading experts in the field, each chapter affords a critical insight to a particular topic, reviews current research, discusses future direction and stimulates discussion. Topics covered include the genomics of probiotic microorganisms, the developing technologies for analysis of gut microorganisms, evaluation and future potential of prebiotic substances, and the potential for disease prevention in the host by probiotic organisms. This book is an essential text for all microbiologists, health professionals, biotechnologists, pharmaceutical companies, and dairy and food scientists.
Achieving environmental sustainability with rapid industrialization is currently a major global challenge. Industries are the key economic drivers, but are also the main polluters as untreated/partially treated effluents from industry are usually discharged into the aquatic environment or dumped. Industrial effluents often contain highly toxic and hazardous pollutants, which cause ecological damage and present and health hazards to living beings. As such, there is a pressing need to find ecofriendly solutions to deal with industrial waste, and to develop sustainable methods for treating/detoxifying waste before it's released into the environment. As a low cost and eco-friendly clean technology, bioremediation can offer a sustainable alternative to conventional remediation technologies for the treatment and management of industrial wastes. This book (Volume II) describes the role of biological agents in the degradation and detoxification of organic and inorganic pollutants in industrial wastes, and presents recent bioremediation approaches for waste treatment and management, such as constructed wetlands, electro- bioremediation and nano-bioremediation, as well as microbial fuel cells. It appeals to students, researchers, scientists, industry professionals and experts in the field of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation and waste management and other relevant areas who are interested in biodegradation and bioremediation of industrial wastes for environmental safety.
This volume covers the fields of origin, evolution and phylogenesis from prokaryotic to eukaryotic cells. The eminent authors, experts in their fields, review the three kingdoms of life (Archea, Eubacteria and Eukarya) from molecular evolutionary levels to ecological aspects in enigmatic habitats, including general reviews of puzzling pro-and eukaryotic organisms and their domains. We discuss dry habitats, thermophilic (cells in hot springs and undersea thermal vents up to 110AC), psychrophilic (cryophiles) and halophilic (high salt concentrations) niches which among the harshest conditions found on Earth where microbial life is frequently detected. Some chapters deal with the organisms which grow in extreme pH conditions (acidity vs. alkalinity), and under hydrostatic pressure in the deep sea, and microbial growth on petroleum. Other contributors present their research on aerobiology and microbes growing in various gases and various levels of radiation, including cellular morphological modification in these extremophilic microbes. This volume also includes the symbiotic association between two or more organisms on the endocellular and exocellular levels. Finally one paper identifies the extremophiles as candidates for exobiology. This is a valuable comprehensive volume in English that covers most of the extremophiles in a new light with current research data. Audience: Students, lecturers and researchers; scholars in the fields of biology, evolutionary biology and chemistry, and other evolutionary fields, and the intelligent layman.
In this timely book, leading international Pasteurellaceae scientists critically review the most important current research providing an up-to-date review of the molecular biology, genomics and virulence of these fascinating organisms. Topics covered include taxonomy and biodiversity, phylogeny, comparative genomics, competence, DNA uptake and transformation, proteomics and protein secretion, RTX toxins, lipopolysaccharides, biofilms, quorum sensing, antimicrobial resistance, diagnosis, and OMP and iron uptake. Each chapter is independent and can be read in isolation and as a whole the book provides an important resource summarising our current knowledge of Pasteurellaceae genomics and molecular biology. Essential reading for everyone working on Pasteurellaceae and related organisms.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 285 volumes have been
published (all of them still in print) and much of the material is
relevant even today-truly an essential publication for
researchersin all fields of life sciences.
The functional analysis of plant-microbe interactions has re-emerged in the past 10 years due to spectacular advances in integrative study models. This book summarizes basic and technical information related to the plant growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum, considered to be one of the most representative PGPR last 40 years. We include exhaustive information about the general microbiology of genus Azospirillum, their identification strategies; the evaluation of plant growth promoting mechanisms, inoculants technology and agronomic use of these bacteria and some special references to the genetic technology and use.
Biological nitrogen fixation (BNF) has become important in rice farming systems because this process diminishes the need for expensive chemical fertilizers which have been associated with numerous health and environmental problems. The extensive exploitation of BNF would provide economic benefits to small farmers, avoiding all malign influences of chemical fertilizers. Meanwhile, advances in biotechnology have brought rice genetics to the threshold of new opportunities for increasing rice production. This volume focuses, in six different sessions, on the role of BNF in the improvement of rice production in the light of the current state of the art of BNF technology transfer and diffusion. New ideas on BNF technology in research, extension information and inoculant technology are also included, together with the socio-economic impacts of using BNF in rice farm systems.
Established for almost 30 years, Methods in Microbiology is the
most prestigious series devoted to techniques and methodology in
the field. Now totally revamped, revitalized, with a new format and
expanded scope, Methods in Microbiology will continue to provide
you with tried and tested, cutting-edge protocols to directly
benefit your research.
This book highlights the latest research on waste processing technologies, particularly for domestic, agricultural, and petroleum based pollutants, intended to achieve waste valorisation. In addition, it discusses the important role of plastic recycling, as well as advanced waste processing techniques.
Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume."Ecological Genomics"covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. "Ecological Genomics"covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation. "
Praise for the Series
The ancient beverage wine is the result of the fermentation of grape must. This n- urally and fairly stable product has been and is being used by many human societies as a common or enjoyable beverage, as an important means to improve the quality of drinking water in historical times, as therapeutical agent, and as a religious symbol. During the last centuries, wine has become an object of scientific interest. In this respect different periods may be observed. At first, simple observations were recorded, and subsequently, the chemical basis and the involvement of microorg- isms were elucidated. At a later stage, the scientific work led to the analysis of the many minor and trace compounds in wine, the detection and understanding of the biochemical reactions and processes, the diversity of microorganisms involved, and the range of their various activities. In recent years, the focus shifted to the genetic basis of the microorganisms and the molecular aspects of the cells, including metabolism, membrane transport, and regulation. These different stages of wine research were determined by the scientific methods that were known and available at the respective time. The recent "molecular" approach is based on the analysis of the genetic code and has led to significant results that were not even imaginable a few decades ago. This new wealth of information is being presented in the Biology of Microorganisms on Grapes, in Must, and in Wine.
Plant conservation is increasingly recognised as an outstanding global priority, yet despite considerable efforts over the last few decades, the number of threatened species continues to rise. The practice of plant conservation has for too long been a rather hit-or-miss mixture of methods. While microorganisms have been recognised as a crucial and essential element in supporting the lifecycles of plant species, there has been limited recognition of the relationships between macro level conservation facilitating ecosystem functioning at the micro level. This book addresses the role of microorganisms in conservation - both their support functions and deleterious roles in ecosystem processes and species survival. Importantly, a number of authors highlight how microbial diversity is, itself, now under threat from the many and pervasive influences of man. What is clear from this volume is that like many contemporary treatments of plant and animal conservation, the solution to mitigate the erosion of biodiversity is not simple. This book represents an attempt to bring to the fore the ecological underwriting provided by microorganisms.
It has been known for a number of years that not only pathogenicity islands but also plasmids and bacteriophages are able to carry genes whose products are involved in pathogenic processes. Accordingly, such elements and their products play an important role in pathogenesis due to the intestinal E. coli as well due to Shigellae. Another interesting aspect which is reflected in different articles is that genomes evolve by acquisition of new pieces of DNA following gene transfer, but also by genome reduction. Different mechanisms include the deletion of sequences or the elimination of functions by the accumulation of point mutations or rearrangements.
mRNA Formation and Function presents a compendium of techniques
geared exclusively toward the understanding of RNA metabolism. It
will be particularly useful because a number of different organisms
and systems are employed.
This exciting book presents diverse applications of microalgal renewable resources to meet modern demands for energy and value-added products. It also comprehensively describes the role of algae in sustainable and cost-effective wastewater treatment strategies, and highlights the latest research on, advances in and biotechnological relevance of algae in the areas of bioenergy, bioremediation, pharmaceuticals, nutraceuticals and green economy. The book addresses gaps in the fields of bioenergy, waste management, health and economy by providing broad information on bioenergy production, management strategies, drug development, nutraceuticals products and biobased economy using algae at the commercial level. The book introduces researchers to key and emerging innovations in the field of algal biology research and will assist policymakers, environmentalists, scientists, students and global thinkers in defining sustainable developmental goals for the future. Accordingly, it is an extremely important read for researchers and students in the environmental sciences, life sciences and chemistry, experts in the energy sector and policymakers alike.
Cyanobacteria are single-celled organisms that live in fresh, brackish, and marine water. They use sunlight to make their own food. In warm, nutrient-rich environments, microscopic cyanobacteria can grow quickly, creating blooms that spread across the water 's surface and may become visible. Because of the color, texture, and location of these blooms, the common name for cyanobacteria is blue-green algae. However, cyanobacteria are related more closely to bacteria than to algae. Cyanobacteria are found worldwide, from Brazil to China, Australia to the United States. In warmer climates, these organisms can grow year-round. Scientists have called cyanobacteria the origin of plants, and have credited cyanobacteria with providing nitrogen fertilizer for rice and beans. But blooms of cyanobacteria are not always helpful. When these blooms become harmful to the environment, animals, and humans, scientists call them cyanobacterial harmful algal blooms (CyanoHABs). Freshwater CyanoHABs can use up the oxygen and block the sunlight that other organisms need to live. They also can produce powerful toxins that affect the brain and liver of animals and humans. Because of concerns about CyanoHABs, which can grow in drinking water and recreational water, the U.S. Environmental Protection Agency (EPA) has added cyanobacteria to its Drinking Water Contaminant Candidate List. This list identifies organisms and toxins that EPA considers to be priorities for investigation. Reports of poisonings associated with CyanoHABs date back to the late 1800s. Anecdotal evidence and data from laboratory animal research suggest that cyanobacterial toxins can cause a range of adverse humanhealth effects, yet few studies have explored the links between CyanoHABs and human health. Humans can be exposed to cyanobacterial toxins by drinking water that contains the toxins, swimming in water that contains high concentrations of cyanobacterial cells, or breathing air that contains cyanobacterial cells or toxins (while watering a lawn with contaminated water, for example). Health effects associated with exposure to high concentrations of cyanobacterial toxins include: stomach and intestinal illness; trouble breathing; allergic responses; skin irritation; liver damage; and neurotoxic reactions, such as tingling fingers and toes. Scientists are exploring the human health effects associated with long-term exposure to low levels of cyanobacterial toxins. Some studies have suggested that such exposure could be associated with chronic illnesses, such as liver cancer and digestive-system cancer. This monograph contains the proceedings of the International Symposium on Cyanobacterial Harmful Algal Blooms held in Research Triangle Park, NC, September 6-10, 2005. The symposium was held to help meet the mandates of the Harmful Algal Bloom and Hypoxia Research and Control Act, as reauthorized and expanded in December 2004. The monograph will be presented to Congress by an interagency task force. The monograph includes: 1) A synopsis which proposes a National Research Plan for Cyanobacteria and their Toxins; 2) Six workgroup reports that identify and prioritize research needs; 3) Twenty-five invited speaker papers thatdescribe the state of the science; 4) Forty poster abstracts that describe novel research.
Although virology and immunology are now considered separate disciplines, history shows that these areas ofinvestigation always overlapped and one cannot really exist without the other. This trend has become particularly significant and fruitful in the past few years in the area of herpesvirus research. The genomes of the most important herpesviruses have been sequenced, a significant portion of their genes have been identified, and many secrets of regulation of gene expr- sion have been unraveled. Now this progress sets the stage for a true revolution in herpesvirus research: analysis of interactions between the host and the virus. Because herpesviruses can induce, suppress, and fool the immune system, the most productive herpesvirologists are also expert immunologists, and the current results ofthis interdisciplinary effort are truly remarkable. Because herpesviruses cause many important human diseases, the devel- ment of vaccines against these agents is a very significant goal. This effort is also very challenging because of the complexity of herpesviruses and the lack of sufficient information about immune responses. The remarkable ability of herpesviruses to escape immune responses is - other feature that brings immunology and virology together. Herpesviruses - code many proteins that interact with and down-regulate some key elements of the immune system. Thisproperty of herpesviruses represents amajor challenge in developing strategies against these viruses. On the positive side, these viral proteins also provide novel tools for analyzing specific immune reactions and molecular mechanisms.
The use of renewable bioenergy is increasing, and so is the production of associated wastes: biomass ashes. This book presents eleven chapters on the options for recycling such biomass ashes, ranging from their use as fertilizer in agriculture and forestry to their application as a supplement for the production of cement-based materials or bricks. The book also examines the pros and cons for each of the different uses of biomass ashes.
Neutrophils, the most abundant white cells in humans, serve as the primary cellular defense against infection. Neutrophil Methods and Protocols, Second Edition provides a concise set of protocols written by leading researchers in the field for assessing basic neutrophil functions, investigating specialized areas in neutrophil research, and completing step diagnostic assays of common neutrophil disorders. Topics covered include an overview of neutrophils and their role in host defense and inflammation; methods most commonly used for isolating neutrophils from humans and other animal species; procedures for subcellular fractionation of human neutrophils, analysis of in vivo transmigrated neutrophils, generation of mature neutrophils from induced pluripotent stem cells and analysis of neutrophil gene expression; methods for investigating priming, oxidant production, phagocytosis, bactericidal activity and extracellular trap formation and protocols for investigating neutrophil adhesion, chemotaxis and outside-in signaling via integrins. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Neutrophil Methods and Protocols, Second Edition is a comprehensive source for detailed explanations and applications of the most modern methodological advances in neutrophil biology. Both basic scientists and clinicians will find a collection of this caliber to be an invaluable aid in their work with neutrophils.
The tetracyclines have an illustrious history as therapeutic agents which dates back over half a century. Initially discovered as an antibiotic in 1947, the four ringed molecule has captured the fancy of chemists and biologists over the ensuing decades. Of further interest, as described in the chapter by George Armelagos, tetracyclines were already part of earlier cultures, 1500-1700 years ago, as revealed in traces of drug found in Sudanese Nubian mummies. The diversity of chapters which this book presents to the reader should illus trate the many disciplines which have examined and seen benefits from these fascinating natural molecules. From antibacterial to anti-inflammatory to anti autoimmunity to gene regulation, tetracyclines have been modified and redesigned for various novel properties. Some have called this molecule a biol ogist's dream because of its versatility, but others have seen it as a chemist's nightmare because of the synthetic chemistry challenges and "chameleon-like" properties (see the chapter by S. Schneider).
The symposium, "Microbial Diversity in Time and Space," was held in the Sanjo Conference Hall, University of Tokyo, Tokyo, Japan, October 24-26, 1994. The symposium was organized under the auspices of the Japanese Society of Microbial Ecology and co-sponsored by the International Union of Biological Sciences (IUBS), International Union of Microbiological Societies (IUMS), International Committee on Microbial Ecology (ICOME), and the Japanese Society of Ecology. The aim of the symposium was to stress the importance of the global role of microorganisms in developing and maintaining biodiversity. Twenty-four speakers from seven countries presented papers in the symposium and in the workshop, "Microbial Diversity and Cycling of Bioelements," that followed the symposium. Papers presented at the symposium are published in this proceedings. Discussions of the workshop, which were energetic and enthusiastic, are also summarized in this proceedings. The symposium provided an opportunity to address the role of microorganisms in global cycles and as the basic support ofbiodiversity on the planet. Previously unrecognized as both contributing to and sustaining biodiversity, microorganisms are now considered to be primary elements of, and a driving force in, biodiversity. Financial support was provided for the symposium by the CIBA GEIGY Foundation for the Promotion of Science, Naito Foundation, and the Uchida Foundation of the Ocean Research Institute, University of Tokyo. Support from these foundations is gratefully acknowledged. CONTENTS Microbial Biodiversity-Global Aspects ................................. 1 Rita R. Colwell 2. Importance of Community Relationships in Biodiversity ...................
This Volume provides protocols for the biochemical analysis of hydrocarbon- and lipid-relevant products, cell components and activities of microbes that interact with hydrophobic compounds. They include methods for the extraction, purification and characterisation of surface tension-reducing bioemulsifiers and biosurfactants that increase the surface area and hence bioavailability of hydrophobic substrates. Protocols for the isolation and biochemical analysis of lipids and polyhydroxyalkanoates, food storage products made during nutrient abundance that represent important biotechnological products, are presented. The extraction of membrane lipid rafts, sub-organelles that fulfil important functional roles for the cell membrane, and the isolation and characterisation of membrane phospholipid biomarkers, are also described. The purification and characterisation of integral membrane hydrocarbon-oxidising enzymes are addressed. Lastly, two generic methods for the genetic analysis of catabolic pathways and analysis of ligand binding are presented. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
In the post genomic era, understanding of the innate immune system is enriched by findings on the specificity of innate immune reactions as well as to novel functions that do not strictly correlate with immunological defense and surveillance, immune modulation or inflammation. This volume covers natural killer cells, mast cells, phagocytes, toll-like receptors, complement, host defense in plants and invertebrates, evasion strategies of microorganisms, pathophysiology, protein structures, design of therapeutics, and experimental approaches. |
![]() ![]() You may like...
Laboratory Methods in Food Microbiology
Wilkie F. Harrigan
Paperback
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,597
Discovery Miles 35 970
Microbial Biomolecules - Emerging…
Ajay Kumar, Muhammad Bilal, …
Paperback
R3,838
Discovery Miles 38 380
Microbial Management of Plant Stresses…
Ajay Kumar, Samir Droby
Paperback
R4,145
Discovery Miles 41 450
Unravelling Plant-Microbe Synergy
Dinesh Chandra, Pankaj Bhatt
Paperback
R3,556
Discovery Miles 35 560
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,202
Discovery Miles 32 020
|