![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Given the rapid advances in the field, this book offers an up-to-date introduction to nanomaterials and nanotechnology. Though condensed into a relatively small volume, it spans the whole range of multidisciplinary topics related to nanotechnology. Starting with the basic concepts of quantum mechanics and solid state physics, it presents both physical and chemical synthetic methods, as well as analytical techniques for studying nanostructures. The size-specific properties of nanomaterials, such as their thermal, mechanical, optical and magnetic characteristics, are discussed in detail. The book goes on to illustrate the various applications of nanomaterials in electronics, optoelectronics, cosmetics, energy, textiles and the medical field and discusses the environmental impact of these technologies. Many new areas, materials and effects are then introduced, including spintronics, soft lithography, metamaterials, the lotus effect, the Gecko effect and graphene. The book also explains the functional principles of essential techniques, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), scanning near field optical microscopy (SNOM), Raman spectroscopy and photoelectron microscopy. In closing, Chapter 14, 'Practicals', provides a helpful guide to setting up and conducting inexpensive nanotechnology experiments in teaching laboratories.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
This book provides a systemic and self-contained guide to the theoretical description of the fundamental properties of plasmonic waves. The field of plasmonics is built on the interaction of electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures, and so to describe basic plasmonic behavior, boundary-value problems may be formulated and solved using electromagnetic wave theory based on Maxwell's equations and the electrostatic approximation. In preparation, the book begins with the basics of electromagnetic and electrostatic theories, along with a review of the local and spatial nonlocal plasma model of an electron gas. This is followed by clear and detailed boundary value analysis of both classical three-dimensional and novel two-dimensional plasmonic systems in a range of different geometries. With only general electromagnetic theory as a prerequisite, this resulting volume will be a useful entry point to plasmonic theory for students, as well as a convenient reference work for researchers who want to see how the underlying models can be analysed rigorously.
This book introduces the reader the chemistry of reaction approaches by which noble metal nanoparticles are synthesized, including synthetic approaches using the Brust-Schiffrin method , a high-temperature solution-phase synthesis, polymer and biological entities, weak and strong reducing and capping agents, the low and high temperatures, various additives and various novel approaches such as plasma, ionic liquids, UV light and gamma rays and others. This book starts with a brief overview of foundation work concerned with the chapter topics such as nanomaterials, nanoscience, surface-capping molecules, traditional and nontraditional reduction agents, In addition, chemical and physical properties of noble metal nanoparticles with different structures and elements such as monolayered clusters, nanorods, and bimetallic nanoparticles are described comprehensively. The aim is to summarize the fundamentals and mechanistic approaches in the preparation and characterization of metal colloidal nanoparticles and dispersions. In this way the reader is provided with a systematic and coherent picture of the interesting field of nanoscience based on noble metal colloidal nanoparticles. Intended as a wide-ranging overview, the book is a resource for novices in the field as well as for specialists, particularly those scientists working in the area of nanoparticle synthesis. Nanoscience and nanotechnology are discussed from the chemist's point of view. Therefore, this volume describes in detail the terms, definitions, theories, experiments, and techniques dealing with the synthesis of noble metal nanoparticles. The material presented here is essential reading for research chemists, technologists, and engineers in the fields of specialty nanomaterials and metal industries, and also is highly valuable for researchers in university, institutional, and governmental laboratories, especially for those at advanced stages of their careers.
This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.
This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today's human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field. Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.
This thesis offers a comprehensive introduction to surface acoustic waves in the quantum regime. It addresses two of the most significant technological challenges in developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. Electron spins confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. To this end, the author pursues novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability.
Semiconductor heterostructures represent the backbone for an increasing variety of electronic and photonic devices, for applications including information storage, communication and material treatment, to name but a few. Novel structural and material concepts are needed in order to further push the performance limits of present devices and to open up new application areas. This thesis demonstrates how key performance characteristics of three completely different types of semiconductor lasers can be tailored using clever nanostructure design and epitaxial growth techniques. All aspects of laser fabrication are discussed, from design and growth of nanostructures using metal-organic vapor-phase epitaxy, to fabrication and characterization of complete devices.
Magnetic and spintronic materials are ubiquitous in modern technological applications, e.g. in electric motors, power generators, sensors and actuators, not to mention information storage and processing. Medical technology has also greatly benefited from magnetic materials - especially magnetic nanoparticles - for therapy and diagnostics methods. All of the above-mentioned applications rely on the properties of the materials used. These properties in turn depend on intrinsic and extrinsic material parameters. The former are related to the actual elements used and their properties, e.g. atomic magnetic moment and exchange interaction between atoms; the latter are related to the structural and microstructural properties of the materials used, e.g. their crystal structure, grain size, and grain boundary phases. Focusing on state-of-the-art magnetic and spintronic materials, this book will introduce readers to a range of related topics in Physics and Materials Science. Phenomena and processes at the nanoscale are of particular importance in this context; accordingly, much of the book addresses such topics.
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
Recent studies have shown that novel processing and modeling techniques may be used to create patient-specific prostheses, artificial tissues, and other implants using data obtained from magnetic resonance imaging, computed tomography, or other imaging techniques. For example, customized prostheses may be fabricated that possess suitable features, including geometry, size, and weight, for a given medical condition. Many advances have been made in the development of patient-specific implants in the past decade, yet this information is not readily available to scientists and students. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery provides the biomaterials scientist and engineer, as well as advanced undergraduate or graduate students, with a comprehensive discussion of contemporary medical implant research and development. The development of printed biomaterials is multidisciplinary, and includes concepts traditionally associated with engineering, materials science, medicine, and surgery. This text highlights important topics in these core fields in order to provide the fundamentals necessary to comprehend current processing and modeling technologies and to develop new ones.
The unfortunate and serious accident at the nuclear power plants in Fukushima, Japan caused by the earthquake and tsunami in March 2011 dealt Japan a serious blow. Japan was nearly deprived of electric power when in response to the accident all nuclear reactors in Japan were shut down. This shortage further accelerated the introduction of renewable energies. This book surveys the new materials and approaches needed to use nanotechnology to introduce the next generation of advanced lithium batteries, currently the most promising energy storage devices available. It provides an overview of nanotechnology for lithium batteries from basic to applied research in selected high technology areas. The book especially focuses on near-term and future advances in these fields. All contributors to this book are expert researchers on lithium batteries.
This title reports the state-of-the-art advancements in modeling and characterization of fundamental and the recently designed carbon based nanocomposites (graphenes, fullerenes, polymers, crystals and allotropic forms). Written by leading experts in the field, the book explores the quantification, indexing, and interpretation of physical and chemical exotic properties related with space-time structure-evolution, phase transitions, chemical reactivity, and topology. Exotic Properties of Carbon Nanomatter is aimed at researchers in academia and industry.
E-Health Systems Quality and Reliability: Models and Standards addresses the reason, principles and functionality of health and health care systems and presents a novel framework for revealing, understanding and implementing appropriate management interventions leading to qualitative improvement. It also provides evidence on the quality and reliability of telemedicine and reviews standards and guidelines for practicing medicine at a distance.
"FIB Nanostructures "reviews a range of methods, including milling, etching, deposition, and implantation, applied to manipulate structures at the nanoscale. Focused Ion Beam (FIB) is an important tool for manipulating the structure of materials at the nanoscale, and substantially extends the range of possible applications of nanofabrication. FIB techniques are widely used in the semiconductor industry and in materials research for deposition and ablation, including the fabrication of nanostructures such as nanowires, nanotubes, nanoneedles, graphene sheets, quantum dots, etc. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of FIB for nanostructures and related materials and devices, and to provide a comprehensive introduction to the field and directions for further research. Chapters written by leading scientists throughout the world create a fundamental bridge between focused ion beam and nanotechnology that is intended tostimulate readers' interest in developing new types of nanostructures for application to semiconductor technology. These applications are increasingly important for the future development of materials science, energy technology, and electronic devices. The book can be recommended for physics, electrical engineering, and materials science departments as a reference on materials science and device design."
Nanostructured materials have been largely studied in the last few years. They have great potential of applications in different fields such as materials science, physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. Based on results obtained by the authors' research group during the past decade, this book comes to present novel techniques to synthesize nanostructured materials and characterize their properties such as crystallinity and crystallite size, specific surface area, particle size, morphology and catalytic activity. This book is aimed for students, researchers and engineers searching for methodologies to obtain and characterize nanostructures in details.
This book explores the impacts of important material parameters on the electrical properties of indium arsenide (InAs) nanowires, which offer a promising channel material for low-power electronic devices due to their small bandgap and high electron mobility. Smaller diameter nanowires are needed in order to scale down electronic devices and improve their performance. However, to date the properties of thin InAs nanowires and their sensitivity to various factors were not known. The book presents the first study of ultrathin InAs nanowires with diameters below 10 nm are studied, for the first time, establishing the channel in field-effect transistors (FETs) and the correlation between nanowire diameter and device performance. Moreover, it develops a novel method for directly correlating the atomic-level structure with the properties of individual nanowires and their device performance. Using this method, the electronic properties of InAs nanowires and the performance of the FETs they are used in are found to change with the crystal phases (wurtzite, zinc-blend or a mix phase), the axis direction and the growth method. These findings deepen our understanding of InAs nanowires and provide a potential way to tailor device performance by controlling the relevant parameters of the nanowires and devices.
DNA nanotechnology: From structure to function presents an overview of various facets of DNA nanotechnology, with a particular focus on their promising applications. This book is composed of three parts. Part I, Elements of DNA Nanotechnology, provides extensive basic information on DNA nanotechnology. Part II, Static and Dynamic DNA Nanotechnology, describes the design and fabrication of static and dynamic DNA nanostructures. Recent advances in DNA origami, DNA walkers and DNA nanodevices are all covered in this part. Part III, Applications of DNA Nanotechnology, introduces a variety of applications of DNA nanotechnology, including biosensing, computation, drug delivery, etc. Together these provide a comprehensive overview of this emerging area and its broad impact on biological and medical sciences. This book is intended for post-graduates, post-doctoral researchers and research scientists who are interested in expanding their knowledge of DNA nanotechnology. It provides readers an impression of the latest developments in this exciting filed.
This book surveys recent advances in theranostics based on magnetic nanoparticles, ultrasound contrast agents, silica nanoparticles and polymeric micelles. It presents magnetic nanoparticles, which offer a robust tool for contrast enhanced MRI imaging, magnetic targeting, controlled drug delivery, molecular imaging guided gene therapy, magnetic hyperthermia, and controlling cell fate. Multifunctional ultrasound contrast agents have great potential in ultrasound molecular imaging, multimodal imaging, drug/gene delivery, and integrated diagnostics and therapeutics. Due to their diversity and multifunctionality, polymeric micelles and silica-based nanocomposites are highly capable of enhancing the efficacy of multimodal imaging and synergistic cancer therapy. This comprehensive book summarizes the main advances in multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, and explores the clinical translational prospects and challenges. Although more research is needed to overcome the substantial obstacles that impede the development and availability of nanotheranostic products, such nontrivial nanoagents are expected to revolutionize medical treatments and help to realize the potential of personalized medicine to diagnose, treat, and follow-up patients with cancer. Zhifei Dai is a Professor at the Department of Biomedical Engineering, College of Engineering, Peking University, China.
This book presents cutting-edge research on a wide range of nanotechnology techniques and applications. It features contributions from scientists who participated in the International Summer School "Nanotechnology: From Fundamental Research to Innovations" in Bukovel, Ukraine on August 26 - September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Universite Pierre et Marie Curie (France). Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy. Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance Raman and SERS for surface characterization, and scanning tunneling microscopy of organic molecules. The breadth of topics highlights the exciting variety of research currently being undertaken in this field and suggests new opportunities for interdisciplinary collaboration and future research.
This volume is the latest of the "Kirchberg-Proceedings". The previous 11 International Winterschools on Electronic Properties of Novel Materials, all held in Kirchberg, Austria, were devoted to conducting polymers, high temperature superconductors, fullerenes, and carbon nanotubes. Fullerenes and nanotubes are still in the center of interest, but the topic of the school and the proceedings is molecular nanostructures in general. The organizers have attempted to treat carbon nanostructures as a special case of molecular nanostructures, which also include silicon clusters, gold clusters, vanadium oxide tubes, and many others. The Winterschool provides a platform for reviewing and discussing new developments in the field of molecular nanostructures and their applications. Materials discussed include fullerenes, fullerene-derived structures, carbonaceous nanotubes, non-carbonaceous nanotubes, layer by layer systems, molecular clusters, new phases of carbon, endohedral compounds and related materials. The book aims to give an overview of the current status of fullerenes, carbon-nanotubes and related molecular nanostructures. The majority of the contributions present the latest results of experiments and calculations conducted in the field. However, about a dozen contain some degree of instructional material which even newcomers will benefit from.
This thesis exploits the ability of the linear-scaling quantum mechanical code ONETEP to analyze systems containing many thousands of atoms. By implementing an electron transport capability to the code, it also investigates a range of phenomena associated with electrical conduction by nanotubes and, in particular, the process of transport electrons between tubes. Extensive work has been done on the conductivity of single carbon nanotubes. However, any realistic wire made of nanotubes will consist of a large number of tubes of finite length. The conductance of the resulting wire is expected to be limited by the process of transferring electrons from one tube to another.These quantum mechanical calculations on very large systems have revealed a number of incorrect claims made previously in the literature. Conduction processes that have never before been studied at this level of theory are also investigated.
Since the original publication of Noncontact Atomic Force Microscopy in 2002, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. This second treatment deals with the following outstanding recent results obtained with atomic resolution since then: force spectroscopy and mapping with atomic resolution; tuning fork; atomic manipulation; magnetic exchange force microscopy; atomic and molecular imaging in liquids; and other new technologies. These results and technologies are now helping evolve NC-AFM toward practical tools for characterization and manipulation of individual atoms/molecules and nanostructures with atomic/subatomic resolution. Therefore, the book exemplifies how NC-AFM has become a crucial tool for the expanding fields of nanoscience and nanotechnology. Written for: Scientists, practitioners, graduate students
The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.
This book provides an overview of direct methods such as limit and shakedown analysis, which are intended to do away with the need for cumbersome step-by-step calculations and determine the loading limits of mechanical structures under monotone, cyclic or variable loading with unknown loading history. The respective contributions demonstrate how tremendous advances in numerical methods, especially in optimization, have contributed to the success of direct methods and their practical applicability to engineering problems in structural mechanics, pavement and general soil mechanics, as well as the design of composite materials. The content reflects the outcomes of the workshop "Direct Methods: Methodological Progress and Engineering Applications," which was offered as a mini-symposium of PCM-CMM 2019, held in Cracow, Poland in September 2019. |
![]() ![]() You may like...
The Cardiovascular Glycocalyx in Health…
Ibra Fancher, Andreia Chignalia
Hardcover
R5,709
Discovery Miles 57 090
Chromatin Signaling and Diseases
Olivier Binda, Martin Ernesto Fernandez-Zapico
Hardcover
R4,302
Discovery Miles 43 020
|