![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
" Handbook of Nanosafety: Measurement, Exposure and Toxicology, " written by leading international experts in nanosafety, provides a comprehensive understanding of engineered nanomaterials (ENM), current international nanosafety regulation, and how ENM can be safely handled in the workplace. Increasingly, the importance of safety needs to be considered when promoting the use of novel technologies like ENM. With its use of case studies and exposure scenarios, "Handbook of Nanosafety" demonstrates techniques to assess exposure and risks and how these assessments can be applied to improve workers' safety. Topics covered include the effects of ENM on human health, characterization of ENM, aerosol dynamics and measurement, exposure and risk assessment, and safe handling of ENM. Based on outcomes from the NANODEVICE initiative, this is an
essential resource for those who need to apply current
nanotoxicological thinking in the workplace and anyone who advises
on nanosafety, such as professionals in toxicology, occupational
safety and risk assessment.
With applications ranging from medical diagnostics to environmental
monitoring, molecular sensors (also known as biosensors, chemical
sensors, or chemosensors), along with emerging nanotechnologies
offer not only valuable tools but also unlimited possibilities for
engineers and scientists to explore the world. New generation of
functional microsystems can be designed to provide a variety of
small scale sensing, imaging and manipulation techniques to the
fundamental building blocks of materials. This book provides
comprehensive coverage of the current and emerging technologies of
molecular sensing, explaining the principles of molecular sensor
design and assessing the sensor types currently available. Having
explained the basic sensor structures and sensing principles, the
authors proceed to explain the role of nano/micro fabrication
techniques in molecular sensors, including MEMS, BioMEMS, MicroTAS
among others. The miniaturization of versatile molecular sensors
opens up a new design paradigm and a range of novel
biotechnologies, which is illustrated through case studies of
groundbreaking applications in the life sciences and elsewhere. As
well as the techniques and devices themselves, the authors also
cover the critical issues of implantability, biocompatibility and
the regulatory framework. Reviews of state-of-the-art molecular sensors and nanotechnologies Explains principles of sensors and fundamental theories with homework problems at the end of each chapter to facilitate learning Demystifies the vertical integration from nanomaterials to devices design Covers practical applications the recent progress in state-of-the-art sensor technologies. Includes case studies of important commercial products Covers the critical issues of implantability, biocompatibility and the regulatory framework "
"New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices" introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can t keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel "smart" image processing methods, applications, and case studies concerning quality improvement of microscope images of microelectronic chips and process optimization. It explains an approach for high-resolution imaging of advanced metallization for micro- and nanoelectronics. This approach obviates the time-consuming preparation and selection of microscope measurement and sample conditions, enabling not only better electron-microscopic resolution, but also more efficient testing and quality control. This in turn leads to productivity gains in design and development of nano-scale ULSI chips. The authors also present several approaches for super-resolving
low-resolution images to improve failure analysis of
microelectronic chips.
This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified either for stationary processes or for nonstationary non-resonance processes described exactly or approximately by the combinations of the non-resonant normal modes. Thus, the role of LPTs in understanding and analyzing of intense resonance energy transfer is similar to the role of NNMs for the stationary processes. The book is a valuable resource for engineers needing to deal effectively with the problems arising in the fields of mechanical and physical applications, when the natural physical model is quite complicated. At the same time, the mathematical analysis means that it is of interest to researchers working on the theory and numerical investigation of nonlinear oscillations.
The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics. This monograph focuses on two major groups of nanomaterials, i.e.nanoparticels and nanocomposites. Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered. Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties. The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials."
This book focuses on angle-resolved photoemission spectroscopy studies on novel interfacial phenomena in three typical two-dimensional material heterostructures: graphene/h-BN, twisted bilayer graphene, and topological insulator/high-temperature superconductors. Since the discovery of graphene, two-dimensional materials have proven to be quite a large "family". As an alternative to searching for other family members with distinct properties, the combination of two-dimensional (2D) materials to construct heterostructures offers a new platform for achieving new quantum phenomena, exploring new physics, and designing new quantum devices. By stacking different 2D materials together and utilizing interfacial periodical potential and order-parameter coupling, the resulting heterostructure's electronic properties can be tuned to achieve novel properties distinct from those of its constituent materials. This book offers a valuable reference guide for all researchers and students working in the area of condensed matter physics and materials science.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research.
In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.
Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I:
Processing; Part II: Properties; and Part III: Applications.
Processing involves nanotube synthesis and macro scale material
formation methods. Properties covers the mechanical, electrical,
chemical and other properties of nanotubes and macroscale
materials. Different approaches to growing high quality long
nanotubes and spinning the nanotubes into yarn are explained in
detail. The best ideas are collected from all around the world
including commercial approaches. Applications of nanotube
superfiber cover a huge field and provides a broad survey of uses.
The book gives a broad overview starting from bioelectronics to
carbon industrial machines. Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others.
"Applied Nanotechnology "takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring: The relationship between nanotechnology and innovationThe changing economics and business models required to commercialize innovations in nanotechnology Product design case studies Applications in various sectors, including information technology, composite materials, energy, and agriculture The role of government in promoting nanotechnology The potential future of molecular self-assembly in industrial production In this 2e, new chapters have been added on energy applications
and the role of nanotechnology in sustainability. The section on
the safety of nanoproducts has also been updated, and material on
funding and commercialization has been updated and expanded, with
new case studies illustrating the experience of new startups in a
challenging economic environment.
This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology's true potential for the next generation VLSI.
This book focuses on molecular space chemistry, which is recognized as an important concept for the design of novel functional materials and catalysts. A wide variety of topics and ideas included in this book are based on that concept. The book showcases recent representative examples of molecular space design to create functional materials and catalysts possessing unique properties. This unique volume will be of great interest to chemists in a wide variety of research fields, including organic, inorganic, biological, polymer, and supramolecular chemistry. Readers will obtain new ideas and directions to create novel functional molecules, and those ideas will lead to innovative views of science.
This thesis combines advanced femtosecond laser micro/nanofabrication technologies and frontier bionic design principles to prepare diverse biomimetic micro/nanostructures to realize their functions. By studying the formation mechanism of the micro/nanostructures, the author identifies various artificial structural colors, three-dimensional micro/nanocage arrays, and fish-scale inspired microcone arrays in different processing environments. Multiple functions such as enhanced antireflection, hydrophobicity, and underwater superoleophobicity are achieved by precisely adjusting laser-machining parameters. This novel design and method have extensive potential applications in the context of new colorizing technologies, microfluidics, microsensors, and biomedicine.
Nanoelectronics are a diverse set of materials and devices that are so small that quantum mechanics need to be applied to their function. The possibilities these devices present outweigh the difficulties associated with their development, as biosensors and similar devices have the potential to vastly improve our technological reach. The Handbook of Research on Nanoelectronic Sensor Modeling and Applications begins with an introduction of the fundamental concepts of nanoelectronic sensors, then proceeds to outline in great detail the concepts of nanoscale device modeling and nanoquantum fundamentals. Recent advances in the field such as graphene technology are discussed at length in this comprehensive handbook, ideal for electrical engineers, advanced engineering students, researchers, and academics.
This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal-oxide-semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal-oxide-semiconductor field-effect transistor) nanoelectronic devices. The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.
This thesis reports the discovery of metal nanoparticles having new structures that do not exist in bulk state and that exhibit hydrogen storage ability or CO oxidation activity. Research into the reaction of hydrogen with metals has attracted much attention because of potential applications as effective hydrogen storage materials, as permeable films, or as catalysts for hydrogenation. Also, CO oxidation catalysts have been extensively developed because of their importance to CO removal from car exhaust or fuel-cell systems. At the same time, atomic-level (solid solution) alloying has the advantage of being able to continuously control chemical and physical properties of elements by changing compositions and/or combinations of constituent elements. This thesis provides a novel strategy for the basis of inter-elemental fusion to create highly efficient functional materials for energy and material conversions.
This book highlights the growing applications of THz technology and various modules used for their successful realization. The enormous advantages of THz devices like higher resolution, spatial directivity, high-speed communication, greater bandwidth, non-ionizing signal nature and compactness make them useful in various applications like communication, sensing, security, safety, spectroscopy, manufacturing, bio-medical, agriculture, imaging, etc. Since the THz radiation covers frequencies from 0.1THz to around 10THz and highly attenuated by atmospheric gases, they are used in short-distance applications only. The book focuses on recent advances and different research issues in terahertz technology and presents theoretical, methodological, well-established and validated empirical works dealing with the different topics.
This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.
This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larger than the superconducting energy gap. The author provides a qualitative interpretation of this unprecedented observation, which is based on the multiband nature of the superconducting state. (3) The thesis also develops a comprehensive description of a superconducting, yet optically transparent iron chalcogenide compound. The author shows that this highly unusual behavior can be explained as a result of the nanoscopic coexistence of insulating and superconducting phases, and he uses a combination of two complementary experimental methods - scanning near-field optical microscopy and low-energy muon spin rotation - to directly image the phase coexistence and quantitatively determine the phase composition. These data have important implications for the interpretation of data from other experimental probes.
This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metallization of semiconductors, ceramics, and polymers. This volume of Modern Aspects of Electrochemistry is ideal for scientists, researchers, engineers, and students interested in the latest findings in the field of electrodeposition and surface finishing.
This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting polymers and photovoltaic devices. This book aims at bridging gaps between the involved scientific disciplines and presents important fundamentals and the current state of research of relevant materials and different types of nanoparticle-based solar cells. The book will be of interest to researchers and PhD students. Moreover, it may also serve to accompany specialized lectures in related areas.
This book brings together reviews from international experts who are exploring the biological activities of nanomaterials for medical applications or to better understand nanotoxicity. Topics include but are not limited to the following: 1) mechanistic understanding of nanostructure-bioactivity relationships; 2) the regulation of nanoparticles' bioactivity by means of chemical modification; 3) the new methodologies and standard methods used to assess nanoparticles' bioactivity; 4) the mechanisms involved in nanoparticle-biomolecule interactions and nanoparticle-cell interactions; and 5) biomedical applications of nanotechnology. The book will be a valuable resource for a broad readership in various subfields of chemical science, engineering, biology, environment, and medicine.
|
![]() ![]() You may like...
Wound Healing Research - Current Trends…
Prasun Kumar, Vijay Kothari
Hardcover
R6,464
Discovery Miles 64 640
The Oxford Handbook of Metamemory
John Dunlosky, Sarah Tauber
Hardcover
R5,966
Discovery Miles 59 660
Subject Mentoring in the Secondary…
James Arthur, Jon Davison, …
Paperback
R1,361
Discovery Miles 13 610
Impacts of Teacher Evaluation and…
Edward Crowe, Rena F. Subotnik
Hardcover
R3,040
Discovery Miles 30 400
Reinventing Depression - A history of…
Christopher M. Callahan, German E. Berrios
Hardcover
R2,092
Discovery Miles 20 920
Smart Cities in the Mediterranean…
Anastasia Stratigea, Elias Kyriakides, …
Hardcover
Fracture Failure Analysis of Fiber…
Sanjay Mavinkere Rangappa, Thottyeapalayam Palanisamy Satishkumar, …
Hardcover
R4,360
Discovery Miles 43 600
|