![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. "Cement-Based Materials for Nuclear-Waste Storage "provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
Stability and Transport in Magnetic Confinement Systems provides an advanced introduction to the fields of stability and transport in tokamaks. It serves as a reference for researchers with its highly-detailed theoretical background, and contains new results in the areas of analytical nonlinear theory of transport using kinetic theory and fluid closure. The use of fluid descriptions for advanced stability and transport problems provide the reader with a better understanding of this topic. In addition, the areas of nonlinear kinetic theory and fluid closure gives the researcher the basic knowledge of a highly relevant area to the present development of transport physics.
This book lays the foundations for you to understand all that you always wanted to know about radioactivity. It begins by setting out essential information about the structure of matter, how radiation occurs and how it can be measured. It goes on to explore the substantial benefits of radioactivity through its many applications, and also the possible risks associated with its use. The field of radioactivity is explained in layman's terms, so that everybody who is interested can improve their understanding of issues such as nuclear power, radiation accidents, medical applications of radiation and radioactivity from the environment. Everything is radioactive. There is natural radioactivity in the homes that we live in, the food that we eat and the air that we breath. For over 100 years, people have recognised the potential for radioactivity to help solve problems and improve our standard of living. This has led to the creation of radioactivity levels in some places that are much higher than naturally-occurring background levels. Such high levels of radiation can be harmful to people and the environment, so there is a clear need to manage this potential harm and to make the risk worth the benefits mankind can achieve from radioactive materials.
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. "Hydrogen Production from Nuclear Energy "provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.
This book presents an interdisciplinary collection of expert analyses and views of existing verification systems. It provides guidelines and advice for the improvement of those systems as well as for new challenges in the field.
This book surveys reliability, availability, maintainability and safety (RAMS) analyses of various engineering systems. It highlights their role throughout the lifecycle of engineering systems and explains how RAMS activities contribute to their efficient and economic design and operation. The book discusses a variety of examples and applications of RAMS analysis, including: * software products; * electrical and electronic engineering systems; * mechanical engineering systems; * nuclear power plants; * chemical and process plants and * railway systems. The wide-ranging nature of the applications discussed highlights the multidisciplinary nature of complex engineering systems. The book provides a quick reference to the latest advances and terminology in various engineering fields, assisting students and researchers in the areas of reliability, availability, maintainability, and safety engineering.
MOX fuel, a mixture of weapon-grade plutonium and natural or depleted uranium, may be used to deplete a portion of the world's surplus of weapon-grade plutonium. A number of reactors currently operate in Europe with one-third MOX cores, and others are scheduled to begin using MOX fuels in both Europe and Japan in the near future. While Russia has laboratory-scale MOX fabrication facilities, the technology remains under study. No fuels containing plutonium are used in the U.S. The 25 presentations in this book give an impressive overview of MOX technology. The following issues are covered: an up to date report on the disposition of ex-weapons Pu in Russia; an analysis of safety features of MOX fuel configurations of different reactor concepts and their operating and control measures; an exchange of information on the status of MOX utilisation in existing power plants, the fabrication technology of various MOX fuels and their behaviour in practice; a discussion of the typical national approaches by Russia and the western countries to the utilisation of Pu as MOX fuel; an introduction to new ideas, enhancing the disposition option of MOX fuel exploitation and destruction in existing and future advanced reactor systems; and the identification of common research areas where defined tasks can be initiated in cooperative partnership.
The text is designed for junior and senior level Nuclear Engineering students. The third edition of this highly respected text offers the most current and complete introduction to nuclear engineering available. Introduction to Nuclear Engineering has been thoroughly updated with new information on French, Russian, and Japanese nuclear reactors. All units have been revised to reflect current standards. In addition to the numerous end-of-chapter problems, computer exercises have been added.
Why has the clean, limitless energy promised by fusion always seemed just out of reach? Search for the Ultimate Energy Source: A History of the U.S. Fusion Energy Program, explains the fundamentals and concepts behind fusion power, and traces the development of fusion historically by decade-covering its history as dictated by US government policies, its major successes, and its prognosis for the future. The reader will gain an understanding of how the development of fusion has been shaped by changing government priorities as well as other hurdles currently facing realization of fusion power. Advance Praise for Search for the Ultimate Energy Source: "Dr. Dean has been uniquely involved in world fusion research for decades and, in this book, describes the complicated realities like few others possibly could." -Robert L. Hirsch, a former director of the US fusion program, an Assistant Administrator of the US Energy Research and Development Administration (ERDA); an executive at Exxon, Arco, and the Electric Power Research Institute (EPRI); and lead author of the book The Impending World Energy Mess (Apogee Prime Books, 2009). "In this book, Dr. Dean provides the many reasons why fusion has progressed more slowly than many had hoped. Budget is usually cited as the culprit, but policy is equally to blame. Facilities have been closed down before their jobs were done-or in some cases, even started. It seems this situation has become endemic in fusion, and if one thinks about it, in other nationally important Science and Technology initiatives as well." -William R. Ellis, a former scientist at Los Alamos National Laboratory, Associate Director of Research at the US Naval Research Laboratory, a vice president at Ebasco Services and at Raytheon, and chair of the US ITER Industry Council and the US ITER Industrial Consortium.
This book deals with the specific contact between the fourth state of matter, i.e. plasma, and the first state of matter, i.e. a solid wall, in controlled fusion experiments. A comprehensive analysis of the main processes of plasma-surface interaction is given together with an assessment of the most critical questions within the context of general criteria and operation limits. It also contains a survey on other important aspects in nuclear fusion.
This book provides extensive and comprehensive knowledge to the researchers/academics who are working in the field of cesium contaminated sites, and the impact on plants. This book is also helpful for graduate and undergraduate students who are specializing in radioecology or safe disposal of radioactive waste, remediation of legacies and the impact on the environment. Radiocesium (137Cs and 134Cs) was released into the environment as a result of nuclear weapons testing in 1950s and 1960s (~1x1018 Bq), and later due to the Chernobyl accident in 1986 (8.5x1016 Bq) and Fukushima Daiichi Nuclear Power Plant in 2011 (~1x1017 Bq). 137Cs is still of relevance due to its half-life of 30 years. The study of radioisotope 137Cs is important, as production and emission rates are high compared to other radioisotopes, due to high fission yield and high volatility. This book contains original work and reviews on how cesium is released into the environment on translocation from soil to plants and further on to animals and into the human food chain. Separate chapters focus on the effective half-life of cesium in plants and on how different cultivars are responding in accumulation of cesium. Other key chapters focus on cesium impact on single cells to higher plants and also on remediation measures as well as on basic mechanism used for remedial options and analysis of transfer factors. The book rounds off by contributions on cesium uptake and translocation and its toxicity in plants after the Chernobyl and Fukushima accidents.
The Russian NATO Advanced Research Workshop on "Scientific Problems and Unresolved Issues Remaining in the Decommissioning of Nuclear Powered Vessels and in the Environmental Remediation ofTheir Supporting Infrastructure," was held in Moscow, Russia at the Presidium of the Russian Academy of Sciences on April 22-24, 2002. This was the third in this series of North Atlantic Treaty Organization (NATO) sponsored workshops in Moscow on nuclear vessel decommissioning. The first one was in June 1995 and served to focus international attention on the problems of nuclear vessel decommissioning in Russia and elsewhere. The second one was in November 1997 and it focused on the risks associated with nuclear vessel decommissioning. Attendance at the current workshop was approximately 100 with participants form Russia, United States, Norway, France, Denmark, Germany, Japan, Korea, NATO, and the European Union. The Workshop was sponsored and funded by the Security-Related Civil Science and Technology Program of the Scientific and Environmental Affairs Division ofNATO. Within Russia, the Workshop was sponsored and supported by the Russian Academy of Sciences, Minatom of Russia, Rossudostroenie, Ministry of Industry and Science of Russia, and the Russian Navy. Within the U.S., the Workshop was supported by the U.S. Department of Energy. The sponsorship and support of all of the above organizations are gratefully acknowledged.
As Member States seek to extend the operating lifetime of nuclear power plants beyond that which was originally licensed, safety oversight of ageing management and long term operation (LTO) has become increasingly important. This Safety Report provides technical and practical information based on existing regulatory approaches and practices of Member States, and the application of the IAEA Safety Standards. This includes requirements and pre?conditions of the regulatory body for LTO, authorization processes applied to LTO, and regulatory practices and documentation to prepare for and implement LTO. The report is intended for nuclear safety authorities, operating organizations, licensees, manufacturers, designers and technical support organizations considering authorization for LTO of nuclear power plants.
The Fukushima nuclear disaster in March 2011 led Japan, and many other countries, to change their energy policies. David Elliott reviews the disaster and its global implications, asking whether, despite continued backing by some governments, the growing opposition to nuclear power means the end of the global nuclear renaissance.
This revised book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. This text treats the fundamentals of thermodynamics from the perspective of nuclear power systems. In addition to the Four Laws of Thermodynamics, it discusses Brayton and Rankine power cycles in detail with an emphasis on how they are implemented in nuclear systems. Chapters have been brought up-to-date due to significant new results that have become available for intercooled systems and combined cycles and include an updated steam table. The book starts with basic principles of thermodynamics as applied to power plant systems. It then describes how Nuclear Air-Brayton systems will work. It documents how they can be designed and the expected ultimate performance. It describes several types of Nuclear Air-Brayton systems that can be employed to meet different requirements and estimates component sizes and performance criteria for Small Modular Reactors (SMR) based on the Air-Brayton concept. The book provides useful insight into the engineering of nuclear power systems for students and the tabular data will be of great use to practicing engineers.
This Safety Guide provides recommendations on the safety assessment for research reactors in the authorization process, and on performance of safety analysis and preparation of the safety analysis report. It also incorporates the relevant lessons learned from the accident at the Fukushima Daiichi nuclear power plant and elaborates guidance on interfaces between nuclear safety and nuclear security. The recommendations in this Safety Guide are intended for operating organizations of research reactors; it can also be used by designers performing a safety assessment for a research reactor. Furthermore, this guide provides useful guidance for regulatory bodies performing a review and assessment of submitted safety analysis reports as an important document within authorization process. This Safety Guide is a revision of IAEA Safety Standards Series No. SSG-20, which it supersedes.
Researchers in plasma fusion labs; also graduate students in plasma physics, high-energy physics, and libraries
This book introduces the reader to the use of Monte Carlo methods for solving practical problems in radiation transport, and will also serve as a reference work for practitioners in the field. It assumes the reader has a general knowledge of calculus and radiation physics, and a knowledge of Fortran programming, but assumes no prior knowledge of stochastic methods or statistical physics. The subject is presented by a combination of theoretical development and practical calculations. Because Monte Carlo methods are closely linked to the use of computers, from the beginning the reader is taught to convert the theoretical constructs developed in the text into functional software for use on a personal computer. Example problems provide the reader with an in-depth understanding of the concepts presented and lead to the production of a unique learning tool, a probabilistic framework code that models in a simple manner the features of production of Monte Carlo transport codes. This framework code is developed in stages such that every function is understood, tested, and demonstrated - random sampling, generating random numbers, implementing geometric models, using variance reduction, tracking particles in a random walk, testing the thoroughness with which the problem phase space is sampled, scoring detectors, and obtaining estimates of uncertainty in results. Advanced topics covered include criticality, correlated sampling, adjoint transport, and neutron thermalization. Monte Carlo codes can produce highly precise wrong answers. The probability of this occurring is increased if production codes are run as opaque, black boxes' of software. This text attempts to make Monte Carlo into acomprehensible, usable tool for solving practical transport problems. It is suitable for advanced undergraduate and graduate students and researchers who wish to expand their knowledge of the Monte Carlo technique.
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.
This book presents a comprehensive overview of Ukraine's nuclear history, beginning from its experiences within the Russian Empire in the early 20th century, through the Soviet period, to the emergence of Ukraine as an independent state that inherited the world's third-largest nuclear arsenal. The book discusses the development of the nuclear infrastructure on Ukrainian soil and offers a rich and nuanced background of how Ukraine became an important and integrated part of the Soviet nuclear infrastructure. It further analyzes Ukraine's nuclear disarmament based on extensive primary source material and places the Ukrainian nuclear reversal process in a larger international political context where Russias, the United States, and other players actions are interpreted in the light of the impact on the current nuclear non-proliferation regime. Finally, the book presents the nuclear-related development after the nuclear disarmament. It describes the integration of Ukraine into the international community and the role of nuclear power in the energy mix of the nation today. Concluding, Ukraines adaptation to the new security situation after the Russian annexation of Crimea is described and discussed. This volume is a must-read for scholars, researchers, students, and policy-makers interested in a better understanding of Ukraine's nuclear history, the political background of the conflict in Eastern Ukraine, as well as of security studies and international relations in general. The work on this book has been supported by the Swedish Radiation Authority (SSM) in the Nuclear History of Ukraine Project (2015-2019).
This edited book is directed primarily to the discussion of the most recent developments and on-going research related to all areas pertaining to plant surveillance and diagnosis. The secondary aim of this book is to identify the successful applications of already well-settled methodological tools in the field. It will highlight advantages of intelligent systems, AI techniques, and integration of soft computing tools and traditional tools, for a better service in all aspects related to power plant surveillance and diagnostics. It also reports recent research results and provides a state of the art on AI in power plant surveillance and diagnostics. The book especially focuses on theoretical and analytical solutions to the problems of real interest in AI techniques, possibly combined with other traditional computing tools. |
![]() ![]() You may like...
Careers - An Organisational Perspective
Melinde Coetzee, Dries Schreuder
Paperback
A Midsummer Night's Dream - KS3 Classic…
William Shakespeare, Collins Gcse
Paperback
Economic Report of the President, April…
Executive Office of the President
Paperback
R1,548
Discovery Miles 15 480
|