![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
Separations Technology: The Key to Radioactive Waste Minimization (J.T. Bell, L.H. Bell). Chemical Pretreatment of Savannah River Site Nuclear Waste for Disposal (D.T. Hobbs, D.D. Walker). Disposal of Hanford Site Tank Waste (M.J. Kupfer). Process Chemistry for the Pretreatment of Hanford Tank Wastes (G.J. Lumetta et al.). Removal of Actinides from Hanford Site Wastes Using an Extraction Chromatographic Resin (G.S. Barney, R.G. Cowan). Chemical Mechanisms for Gas Generation in Tank 241SY101 (D.M. Strachan et al.). Combined TRUEXSREX Extraction/Recovery Process (E.P. Horwitz et al.). Noble Metal Fission Products as Catalysts for Hydrogen Evolution from Formic Acid Used in Nuclear Waste Treatment (R.B. King et al.). Microbiological Treatment of Radioactive Wastes (A.J. Francis). Treatment of Highlevel Wastes from the IFR Fuel Cycle (T.R. Johnson et al). Soil*EXSM-An Innovative Process for Treatment of Hazardous and Radioactive Mixed Waste (G.C. Gilles et al.). Clean Option: An Alternative Strategy for Hanford Tank Waste Remediation; Detailed Description of First Example Flowsheet (J.L. Swanson). Index.
This book develops an analysis of the air entrainment processes in
free-surface flows. These flows are investigated as homogeneous
mixtures with variable density. Several types of air-water
free-surface flows are studied: plunging jet flows, open channel
flows, and turbulent water jets discharging into air. Experimental
observations reported by the author confirm the concept that the
air-water mixture behaves as a homogeneous compressible fluid in
each case. This book will be of great interest to professionals
working in many fields of engineering: chemical, civil,
environmental, mechanical, mining, metallurgy, and nuclear.
This book addresses the topic of fractional-order modeling of nuclear reactors. Approaching neutron transport in the reactor core as anomalous diffusion, specifically subdiffusion, it starts with the development of fractional-order neutron telegraph equations. Using a systematic approach, the book then examines the development and analysis of various fractional-order models representing nuclear reactor dynamics, ultimately leading to the fractional-order linear and nonlinear control-oriented models. The book utilizes the mathematical tool of fractional calculus, the calculus of derivatives and integrals with arbitrary non-integer orders (real or complex), which has recently been found to provide a more compact and realistic representation to the dynamics of diverse physical systems. Including extensive simulation results and discussing important issues related to the fractional-order modeling of nuclear reactors, the book offers a valuable resource for students and researchers working in the areas of fractional-order modeling and control and nuclear reactor modeling.
This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?
This volume is a collection of the papers presented at the
International Seminar on Advanced Nuclear Energy Systems toward
Zero Release of Radioactive Wastes, which was held in Japan in
November 2000.
The proceedings entitled "Concentrated Solar Thermal Technologies: Recent Trends and Applications" includes the peer-reviewed selected papers those are presented during NCSTET 2016. The sub-topics under concentrated solar thermal technologies and applications included in the book are Solar Field; Receiver and Heat Exchanger; Coating; Thermal Energy Storage; Cooling; Process Heat; and Smart Grid and Policy Research. The domains mentioned cover topics from resource-assessment, collection to conversion of solar energy for applications, like, heating, cooling and electricity. The proceedings also include invited lectures from domain experts. The edited work will be useful for beginners and for the advanced level researchers in the field of concentrated solar thermal technologies and their applications.
This book presents a comprehensive overview of the computerized core monitoring techniques currently employed at pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants. It also offers a brief overview of the corresponding techniques at research and materials testing reactors. The book combines detailed descriptions of the theoretical background and fundamental underlying principles as well as the practical applications of core surveillance. It not only provides numerous industrial examples to illustrate how complex computerized systems are able to support the safe operation of nuclear reactors, but also outlines some new application areas that were made possible only by state-of-the-art computing resources. Thanks to its practical approach, it serves as a valuable and practical reference book for readers interested in the surveillance of nuclear reactors, ranging from undergraduate and postgraduate students to researchers and experts working at research reactors and nuclear power plants, as well as at nuclear regulatory authorities.
This book is a complete treatment of work done to resolve the problems of position-, current-, and shape-control of plasma in tokamak-type (toroidal) devices being studied as a potential means of commercial energy production by nuclear fusion. Modelling and control are both detailed, allowing non-expert readers to understand the control problem. Starting from the magneto-hydro-dynamic equations, all the steps needed for the derivation of plasma state-space models are enumerated with frequent recall of the basic concepts of electromagnetics. The control problem is then described, beginning with the control of current and position-vertical and radial-control and progressing to the more challenging shape control. The solutions proposed vary from simple PIDs to more sophisticated MIMO controllers. The second edition of Magnetic Control of Tokamak Plasmas contains numerous updates and a substantial amount of completely new material covering areas such as: * modelling and control of resistive wall modes-the most important non-axisimmetric mode; * the isoflux approach for shape control; * a general approach for the control of limiter plasmas; * the use of inner vessel coils for vertical stabilization; and * significantly enhanced treatment of plasma-shape control at JET, including experimental results and introducing a method implemented for operation in the presence of current saturations. Whenever possible, coverage of the various topics is rounded out with experimental results obtained on currently existing tokamaks. The book also includes a presentation of the typical actuators and sensors used for control purposes in tokamaks. Some mathematical details are given in the appendices for the interested reader. The ideas formulated in this monograph will be of great practical help to control engineers, academic researchers and graduate students working directly with problems related to the control of nuclear fusion. They will also stimulate control researchers interested more generally in the advanced applications of the discipline. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book covers the principles and practices behind the Magnetic Confinement Fusion (MCF) approach to driven new source of energy. All possible technical methods, including well established theoretical research, as well as findings tested in an experimental tokamak reactor, are examined in order to determine how to best achieve breakeven via this pathway to plasma-driven fusion. The author undertakes a life cycle analysis to compare and contrast the efficiency, environmental impacts, and operating costs of plasma-driven MCF fusion against other forms of energy generation currently in widespread use. The associated computer code and numerical analysis are included in the book. No prior knowledge of MCF and no more than basic background in plasma physics is required.
"Physics and Engineering of Radiation Detection "presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition isfully revised and provides the latest
developments in detector technology and analyses software. Also,
more material related to measurements in particle physics and a
complete solutions manual have been added.
The present work focuses on the development of intensified small-scale extraction units for spent nuclear fuel reprocessing using advanced process engineering with combined experimental and modelling methodologies. It discusses a number of novel elements, such as the intensification of spent fuel reprocessing and the use of ionic liquids as green alternatives to organic solvents. The use of ionic liquids in two-phase liquid-liquid separation is new to the Multiphase Flow community, and has proved to be challenging, especially in small channels, because of the surface and interfacial properties involved, which are very different to those of common organic solvents. Numerical studies have been also performed to couple the hydrodynamics at small scale with the mass transfer. The numerical results, taken together with scale-up studies, are used to evaluate the applicability of the small-scale units in reprocessing large volumes of nuclear waste.
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.
This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book. As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers. |
You may like...
Agent-Based Modeling and Network…
Akira Namatame, Shu-Heng Chen
Hardcover
R2,970
Discovery Miles 29 700
Creativity in Computing and DataFlow…
Suyel Namasudra, Veljko Milutinovic
Hardcover
R4,204
Discovery Miles 42 040
Logic and Implication - An Introduction…
Petr Cintula, Carles Noguera
Hardcover
R3,185
Discovery Miles 31 850
Elliptic Integrals, Elliptic Functions…
Johannes Blumlein, Carsten Schneider, …
Hardcover
R5,911
Discovery Miles 59 110
Computability, Complexity and Languages…
Martin Davis, Ron Sigal, …
Hardcover
R1,528
Discovery Miles 15 280
Descriptor Revision - Belief Change…
Sven Ove Hansson
Hardcover
Apartness and Uniformity - A…
Douglas S. Bridges, Luminita Simona Vita
Hardcover
R2,659
Discovery Miles 26 590
Fundamentals and Applications of…
Joceli Mayer, Paulo V.K. Borges, …
Hardcover
Modeling and Simulation with Compose and…
Stephen L. Campbell, Ramine Nikoukhah
Hardcover
R3,180
Discovery Miles 31 800
|