Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
This book is a comparative study of two energy policies that illustrates how and why technical fixes in energy policy failed in the United States. In the post-WWII era, the U.S. government forcefully and consistently endorsed the development of civilian nuclear power. It adopted policies to establish the competitiveness of civilian nuclear power far beyond what would have occurred under free-market conditions. Even though synthetic fuel was characterized by a similar level of economic potential and technical feasibility, the policy approach toward synthetic fuel was sporadic and indeterminate. The contrast between the unfaltering faith in nuclear power and the indeterminate attitude toward synthetic fuel raises many important questions. The answers to these questions reveal provocative yet compelling insights into the policy-making process. The author argues that these diverging paths of development can be explained by exploring the dominant government ideology of the time or "ideology of the state" as the sociology literature describes it. The forceful support for nuclear power was a result of a government preoccupied with fighting the Cold War. The U.S. national security planners intentionally idealized and deified nuclear power to serve its Cold War psychological strategy. These psychological maneuverings attached important symbolic meaning to nuclear power. This symbolism, in turn, explains the society-wide enthusiasm. The fabricated myth of the Atomic Age became a self-fulfilling prophecy and ushered in a bandwagon market. On the other hand, a confused, indeterminate, and relatively powerless welfare state stood behind synthetic fuel. The different ideologies of the state explain the government's different attitudes toward nuclear and synfuel endeavors. The overarching discovery is a mode of "belief-based decision-making" in long-term energy planning. This discovery goes against the prevalent assumption of rational choice in social sciences. The author argues that rational-choice assumption is inapplicable because of the extreme long-term nature of energy planning. It is not usually possible to predict the sociopolitical and economic conditions in the distant future. Rational decisions require supporting information, which often includes impossible long-term foresights. One cannot rationally choose between one unknown and another unknown. Pivotal decisions in long-term energy planning must inevitably be belief based, and beliefs are subject to political manipulation and distortions by social mechanisms. Understanding these peculiar but pervasive characteristics of energy business bears important lessons for today's decision making about energy technologies, and the stakes, if anything, are even higher than before. Energy policy communities; historians of the Cold War, American history, and technology; and sociologists would find this book an invaluable resource.
This is a survey of current developments in the field of plutonium disposal by the application of advanced nuclear systems, both critical and subcritical. National research and development plans are also summarized. The actinide-fuelled critical reactors are associated with control problems, since they tend to have a small delayed neutron fraction coupled with a small Doppler effect and a positive void coefficient. Current thinking is turning to accelerator-driven subcritical systems for the transmutation of actinides. The volume draws the conclusion that the various systems proposed are technically feasible, even though not yet technically mature. The book presents a summary and evaluation of all relevant possibilities for burning surplus plutonium, presented by experts from a variety of different disciplines and interests, including the defence establishment. The obvious issue - the non-proliferation of nuclear weapons - is vital, but the matter represents a complex technological challenge that also requires an assessment in economic terms.
In this global wake-up call, nuclear physicist Jeff Eerkens explores remedies for the impending energy crisis, when oil and natural gas are depleted. The Nuclear Imperative demonstrates that solar, wind, and biomass power are incapable of supplying the enormous quantities of electricity and heat needed for manufacturing portable synthetic fuels to replace our current use of fossil fuels. It offers a fresh look at uranium-produced energy as the optimal affordable solution.
This book highlights the advances and trends in the safety analysis of sodium-cooled fast reactors, especially from the perspective of particle bed-related phenomena during core disruptive accidents. A sodium-cooled fast reactor (SFR) is an optimized candidate of the next-generation nuclear reactor systems. Its safety is a critical issue during its R&D process. The book elaborates on research progresses in particle bed-related phenomena in terms of the molten-pool mobility, the molten-pool sloshing motion, the debris bed formation behavior, and the debris bed self-leveling behavior. The book serves as a good reference for researchers, professionals, and postgraduate students interested in sodium-cooled fast reactors. Knowledge provided is also useful for those who are engaging in severe accident analysis for lead-cooled fast reactors and light water reactors.
The aim of this book is to summarize probabilistic safety assessment (PSA) of nuclear power plants (NPPs), and to demonstrate that NPPs can be considered a safe method of producing energy, even in light of the Fukushima accident. The book examines level 1 and 2 full power, low power and shutdown probabilistic safety assessment of WWER440 reactors, and summarizes the author s experience gained during the last 35 years. It provides useful examples taken from PSA training courses delivered by the author and organized by the International Atomic Energy Agency. Such training courses were organised in Argonne National Laboratory (Chicago, IL, USA), Abdus Salaam International Centre for Theoretical Physics (Trieste, Italy) in Malaysia, Vietnam and Jordan to support experts from developing countries. The role of probabilistic safety assessment (PSA) for NPPs (nuclear power plants) is an estimation of the risks in absolute terms and in comparison with other risks of the technical and the natural world. Plant-specific PSAs are being prepared for the NPPs and being applied for detection of weaknesses, design improvement and backfitting, incident analysis, accident management, emergency preparedness, prioritization of research & development and support of regulatory activities. There are three levels of PSA, being performed for full power and low power operation and shutdown operating modes of the plant: Level 1 PSA, Level 2 PSA and Level 3 PSA. The nuclear regulatory authorities do not require the level 3 PSA for NPPs in the member countries of the European Union. So, only limited number of NPPs has available the level 3 PSA in Europe. However, in the light of the Fukushima accident the performance of such analyses is strongly recommended in the future. This book is intended for professionals working in the nuclear industry, and researchers and students interested in nuclear research. "
A great number of nuclear submarines are due to be decommissioned before 2000. The political decisions surrounding the disposal of nuclear compartments, radioactive wastes and spent fuel differ appreciably between the countries that own the boats. The decision makers involved thus need help in comparing and assessing alternative options for the decommissioning of their nuclear submarine fleets. The present volume offers such assistance, with its discussions of the risks associated with long-term water storage of the boats, radioactive and chemical contamination, spent fuel and waste management, and handling and recycling reactor compartments.
This book describes recent technological developments in next generation nuclear reactors that have created renewed interest in nuclear process heat for industrial applications. The author's discussion mirrors the industry's emerging focus on combined cycle Next Generation Nuclear Plants' (NGNP) seemingly natural fit in producing electricity and process heat for hydrogen production. To utilize this process heat, engineers must uncover a thermal device that can transfer the thermal energy from the NGNP to the hydrogen plant in the most performance efficient and cost effective way possible. This book is written around that vital quest, and the author describes the usefulness of the Intermediate Heat Exchanger (IHX) as a possible solution. The option to transfer heat and thermal energy via a single-phase forced convection loop where fluid is mechanically pumped between the heat exchangers at the nuclear and hydrogen plants is presented, and challenges associated with this tactic are discussed. As a second option, heat pipes and thermosyphons, with their ability to transport very large quantities of heat over relatively long distance with small temperature losses, are also examined.
The "VOLGA" conferences, hosted in odd-numbered years by the Department of Theoretical and Experimental Reactor Physics of the Moscow Engineering Physics Institute (MEPhI), are some of the most prestigious technical meetings held in Russia. Traditionally, these conferences present the opportunity for reactor physicists from around the world to gather at MEPhI's holiday camp on the banks of the Volga river (near Tver) to exchange ideas and explore innovative concepts related to nuclear power development. In 1997, NATO became involved in the "VOLGA" meetings for the first time by co-sponsoring "VOLGA97" as an advanced research workshop. This workshop broke with tradition a bit in that the venue was moved from MEPhI's holiday camp to a location nearer Moscow. The workshop program was effectively organized in order to cover a broad range of topics relating to the theme of the meeting. Generally, the papers concerned safety related questions associated with utilizing both weapons-grade and reactor-grade plutonium in the nuclear fuel cycle, including facility requirements, licensing issues, proliferation risks, and a variety of advanced concepts for alternative fuel cycles. The program contained a total of ninety-nine papers presented in five days of sessions."
LESLIE J. JARDINE Lmvrence Livermore National LaboratOlY Livermore, CA 94551 U. S. A. The Advanced Research Workshop (ARW) on Nuc1ear Materials Safety held lune 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 V. S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuc1ear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuc1ear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, inc1uding vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This AR W completed discussions by experts of the nuc1ear materials safety topics that were not covered in the previous, companion ARW on Nuc1ear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuc1ear material aspects of the storage and disposition operations required for excess HEV and plutonium (see Fig. 1, Opening Remarks).
With the end of the Cold War, new opportunities for interaction have opened up between the United States and the countries of the Former Soviet Union. Many of these important initiatives involve the US Department of Energy (DOE) and the Ministry of the Russian Federation for Atomic Energy (MINA TOM). Currently, collaboration is under way which involves reactor safety, the disposition of fissile materials from the weapons program, radioactive waste disposal, and the safety of nuclear warheads. Another fruitful area of interchange resulted from the radiochemical storage tank accident at the site of the Siberian Chemical Compound at Tomsk-7 in 1993. DOE and MINATOM agreed to meet and exchange information about the accident for the purposes of improving safety. A meeting on the Tomsk tank accident was held in Hanford, Washington in 1993, followed by a second meeting in st. Petersburg, Russia in 1994 in which the agenda expanded to include radiochemical processing safety. A third exchange took place in 1995 in Los Alamos, New Mexico, and additional papers were presented on nonreactor nuclear safety. Following a planning session in 1996 in Seattle, Washington, it was decided to hold a fourth technical exchange on the broader subject of nuclear materials safety management. Through a grant from the North Atlantic Treaty Organization (NATO) Disarmament Programme, the meeting took place on March 17- 21, 1997, in Amarillo, Texas as a NATO Advanced Research Workshop (ARW) through grant no. DISRM 961315.
The management and disposal of radioactive wastes are key international issues requiring a sound, fundamental scientific basis to insure public and environmental protection. Large quantities of existing nuclear waste must be treated to encapsulate the radioactivity in a form suitable for disposal. The treatment of this waste, due to its extreme diversity, presents tremendous engineering and scientific challenges. Geologic isolation of transuranic waste is the approach currently proposed by all nuclear countries for its final disposal. To be successful in this endeavor, it is necessary to understand the behavior of plutonium and the other actinides in relevant environmental media. Conceptual models for stored high level waste and waste repository systems present many sCientific difficulties due to their complexity and non-ideality. For example, much of the high level nuclear waste in the US is stored as alkaline concentrated electrolyte materials, where the chemistry of the actinides under such conditions is not well understood. This lack of understanding limits the successful separation and treatment of these wastes. Also, countries such as the US and Germany plan to dispose of actinide bearing wastes in geologic salt deposits. In this case, understanding the speciation and transport properties of actinides in brines is critical for confidence in repository performance and risk assessment activities. Many deep groundwaters underlying existing contaminated sites are also high in ionic strength. Until recently, the scientific basis for describing actinide chemistry in such systems was extremely limited."
Nuclear technology in all countries of the world is subject to controls from the International Atomic Energy Agency (IAEA) to prevent its misuse for military purposes. Recently these controls (or "safeguards") have come under criticism for lack of effectiveness, and the IAEA has now elaborated a strengthened safeguards system reaching deep into the domains of national sovereignty. Problems and prospects of the new system are discussed in this book by a team of German and international scholars, practitioners and officials.
The issue of nuclear energy excites strong emotions and there are widely differing views as to whether nuclear power can or should make a major contribution to reducing greenhouse gas emissions. With the nuclear issue back on the agenda worldwide, this highly topical collection steers a path through these controversies, presenting the views of proponents of nuclear expansion, examining the challenges that face them and exploring the arguments of those who support alternative approaches.
The Advanced Research Workshop on "Nuclear Submarine Decommissioning and Related Problems" was held at the Russian Academy of Sciences in Moscow, Russia on June 19-22, 1995. On June 17 and 18, 1995 some of the workshop participants visited the Zwezdochka Shipyard at Severodvinsk which is a repair and dismantlement facility for Russian nuclear submarines. Attendance at the workshop was approximately 115 with participants from Russia, United States, France, Norway, Canada, Denmark, Sweden, Estonia, and Germany. The workshop was sponsored by the Disarmament Panel of North Atlantic Treaty Organization (NATO) Science Committee. The sponsorship and the financial support of NATO is gratefully acknowledged. The workshop was organized in Russia by the Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE). The efforts of many individuals from IBRAE in producing both a technically challenging workshop and an almost flawless one are also gratefully acknowledged. In addition, the support of the Russian Academy of Sciences, the State Committee of the Russian Federation on Defense Technologies, the Ministry of the Russian Federation on Atomic Energy, the Navy of the Russian Federation, and the United States Department of Energy is acknowledged. xi CURRENT STATUS OF NUCLEAR SUBMARINE DECOMMISSIONING PROBLEMS OF NUCLEAR SUBMARINE DECOMMISSIONING AND RECYCLING N. I. SHUMKOV State Committee for Defense Industry (Goseomoboronprom) Moscow, Russia 1. General Description of the Problem Undoubtedly, the problem of nuclear submarine decommissioning and recycling has been worrying Russian civil and military specialists involved in development, building and operation of submarines for many years.
Purpose ofthe Workshop In the spirit of enhancing developments in science and technology by facilitating international scientific cooperation, the Science Committee of NATO is sponsoring AR W's in several selected priority areas. The objective of this workshop was to discuss what microbial mediated problems have been experienced in the area of nuclear waste management and spent fuel storage. Long term storage of high-level wastes in repositories is just starting in some countries. However, low and medium level wastes have been stored for several decades. In the area of spent fuel interim, storage has been extended at many locations far beyond the intended time. It was a priority of the workshop to examine and discuss what deleterious effects have been observed under these storage conditions or under conditions used in simulated trial tests for predicting material performance under the storage conditions. For example, one chronic problem that was discussed was possibility that microbial influenced corrosion (MIC) could be taking place in the wet storage of spent fuel thereby initiating or accelerating the process of corrosion. Another discussion in the area of waste forms, focused on the presence ofbiofilms which may be breaking down the structure of the waste form and thereby jeopardizing its integrity. The meeting focused on discussing the observations and data collected relating to problems encountered in the storage of these types of wastes, and sharing this information with others that have not monitored their facilities for similar problems.
This book focuses on the issue of 'resurgence of nuclear power' and discusses the feasibility of nuclear in the energy mix of Asian economies. It discusses nuclear energy sector in detail in the context of India, a country where currently overseas supply of hydrocarbon fuels plays a major role in meeting the domestic energy needs. The book presents an in-depth analysis of nuclear energy policy as well as regional and global politics surrounding the nuclear industry, and the relevance of nuclear energy from the low-carbon energy perspective. To do so, it explores three different perspectives. To start with, the resurgence of nuclear power is discussed from a global energy perspective to understand whether and how it has been increasingly gaining policy attention among Asian economies. Secondly, it highlights the role of nuclear power in Asia and examines how the collaboration with the global nuclear sector is influencing that role. While the epicentre of nuclear power growth can be seen shifting to the Global East, there is a growing need for strengthening the industry, its legal and regulatory infrastructure and knowledge management. The third perspective focuses on the challenges and opportunities for the nuclear power industry and explores, to what extent the public perception is in favor of nuclear sector in the region. The perceived risks of nuclear power, public perception related to legal and regulatory issues, and concerns regarding land acquisition for nuclear facilities are also discussed. The book contains contributions from specialists in the global energy and nuclear sector, and examines some of the most sought-after topics related to the energy policy studies, especially in the Asian context.
As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. "Cement-Based Materials for Nuclear-Waste Storage "provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
This book lays the foundations for you to understand all that you always wanted to know about radioactivity. It begins by setting out essential information about the structure of matter, how radiation occurs and how it can be measured. It goes on to explore the substantial benefits of radioactivity through its many applications, and also the possible risks associated with its use. The field of radioactivity is explained in layman's terms, so that everybody who is interested can improve their understanding of issues such as nuclear power, radiation accidents, medical applications of radiation and radioactivity from the environment. Everything is radioactive. There is natural radioactivity in the homes that we live in, the food that we eat and the air that we breath. For over 100 years, people have recognised the potential for radioactivity to help solve problems and improve our standard of living. This has led to the creation of radioactivity levels in some places that are much higher than naturally-occurring background levels. Such high levels of radiation can be harmful to people and the environment, so there is a clear need to manage this potential harm and to make the risk worth the benefits mankind can achieve from radioactive materials.
Stability and Transport in Magnetic Confinement Systems provides an advanced introduction to the fields of stability and transport in tokamaks. It serves as a reference for researchers with its highly-detailed theoretical background, and contains new results in the areas of analytical nonlinear theory of transport using kinetic theory and fluid closure. The use of fluid descriptions for advanced stability and transport problems provide the reader with a better understanding of this topic. In addition, the areas of nonlinear kinetic theory and fluid closure gives the researcher the basic knowledge of a highly relevant area to the present development of transport physics.
This book surveys reliability, availability, maintainability and safety (RAMS) analyses of various engineering systems. It highlights their role throughout the lifecycle of engineering systems and explains how RAMS activities contribute to their efficient and economic design and operation. The book discusses a variety of examples and applications of RAMS analysis, including: * software products; * electrical and electronic engineering systems; * mechanical engineering systems; * nuclear power plants; * chemical and process plants and * railway systems. The wide-ranging nature of the applications discussed highlights the multidisciplinary nature of complex engineering systems. The book provides a quick reference to the latest advances and terminology in various engineering fields, assisting students and researchers in the areas of reliability, availability, maintainability, and safety engineering. |
You may like...
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R1,961
Discovery Miles 19 610
International Cooperation for Enhancing…
Luciano Maiani, Wolfango Plastino, …
Hardcover
R1,416
Discovery Miles 14 160
Fundamentals of CANDU Reactor Physics
Wei Shen, Benjamin Rouben
Hardcover
R2,425
Discovery Miles 24 250
Advances in Energy Technology…
Sadhan Mahapatra, Muhammad Shahbaz, …
Hardcover
R5,457
Discovery Miles 54 570
Introduction to Nuclear Engineering…
John Lamarsh, Anthony Baratta
Paperback
R2,534
Discovery Miles 25 340
Recent Trends in Mechanical Engineering…
C. S. Ramesh, Praduymna Ghosh, …
Hardcover
R6,159
Discovery Miles 61 590
Cyber Security and Safety of Nuclear…
Michael A. Yastrebenetsky, Vyacheslav S. Kharchenko
Hardcover
R5,635
Discovery Miles 56 350
|